Featured Research

from universities, journals, and other organizations

How Computers Learn To Listen: Scientists Develop Model To Improve Computer Language Recognition

Date:
August 16, 2009
Source:
Max-Planck-Gesellschaft
Summary:
We see, hear and feel, and make sense of countless diverse, quickly changing stimuli in our environment seemingly without effort. However, doing what our brains do with ease is often an impossible task for computers.

We see, hear and feel, and make sense of countless diverse, quickly changing stimuli in our environment seemingly without effort. However, doing what our brains do with ease is often an impossible task for computers.

Researchers at the Leipzig Max Planck Institute for Human Cognitive and Brain Sciences and the Wellcome Trust Centre for Neuroimaging in London have now developed a mathematical model which could significantly improve the automatic recognition and processing of spoken language. In the future, this kind of algorithms which imitate brain mechanisms could help machines to perceive the world around them. (PLoS Computational Biology, August 14th, 2009)

Many people will have personal experience of how difficult it is for computers to deal with spoken language. For example, people who 'communicate' with automated telephone systems now commonly used by many organisations need a great deal of patience. If you speak just a little too quickly or slowly, if your pronunciation isn’t clear, or if there is background noise, the system often fails to work properly. The reason for this is that until now the computer programs that have been used rely on processes that are particularly sensitive to perturbations. When computers process language, they primarily attempt to recognise characteristic features in the frequencies of the voice in order to recognise words.

"It is likely that the brain uses a different process," says Stefan Kiebel from the Leipzig Max Planck Institute for Human Cognitive and Brain Sciences. The researcher presumes that the analysis of temporal sequences plays an important role in this. "Many perceptual stimuli in our environment could be described as temporal sequences." Music and spoken language, for example, are comprised of sequences of different length which are hierarchically ordered.

According to the scientist’s hypothesis, the brain classifies the various signals from the smallest, fast-changing components (e.g., single sound units like 'e' or 'u') up to big, slow-changing elements (e.g., the topic). The significance of the information at various temporal levels is probably much greater than previously thought for the processing of perceptual stimuli. "The brain permanently searches for temporal structure in the environment in order to deduce what will happen next," the scientist explains. In this way, the brain can, for example, often predict the next sound units based on the slow-changing information. Thus, if the topic of conversation is the hot summer, 'su…' will more likely be the beginning of the word 'sun' than the word 'supper'.

To test this hypothesis, the researchers constructed a mathematical model which was designed to imitate, in a highly simplified manner, the neuronal processes which occur during the comprehension of speech. Neuronal processes were described by algorithms which processed speech at several temporal levels. The model succeeded in processing speech; it recognised individual speech sounds and syllables. In contrast to other artificial speech recognition devices, it was able to process sped-up speech sequences. Furthermore it had the brain’s ability to 'predict' the next speech sound. If a prediction turned out to be wrong because the researchers made an unfamiliar syllable out of the familiar sounds, the model was able to detect the error.

The 'language' with which the model was tested was simplified - it consisted of the four vowels a, e, i and o, which were combined to make 'syllables' consisting of four sounds. "In the first instance we wanted to check whether our general assumption was right," Kiebel explains. With more time and effort, consonants, which are more difficult to differentiate from each other, could be included, and further hierarchical levels for words and sentences could be incorporated alongside individual sounds and syllables. Thus, the model could, in principle, be applied to natural language.

"The crucial point, from a neuroscientific perspective, is that the reactions of the model were similar to what would be observed in the human brain," Stefan Kiebel says. This indicates that the researchers’ model could represent the processes in the brain. At the same time, the model provides new approaches for practical applications in the field of artificial speech recognition.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stefan J. Kiebel, Katharina von Kriegstein, Jean Daunizeau, Karl J. Friston. Recognizing sequences of sequences. PLoS Computational Biology, August 14, 2009; DOI: 10.1371/journal.pcbi.1000464

Cite This Page:

Max-Planck-Gesellschaft. "How Computers Learn To Listen: Scientists Develop Model To Improve Computer Language Recognition." ScienceDaily. ScienceDaily, 16 August 2009. <www.sciencedaily.com/releases/2009/08/090814100103.htm>.
Max-Planck-Gesellschaft. (2009, August 16). How Computers Learn To Listen: Scientists Develop Model To Improve Computer Language Recognition. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2009/08/090814100103.htm
Max-Planck-Gesellschaft. "How Computers Learn To Listen: Scientists Develop Model To Improve Computer Language Recognition." ScienceDaily. www.sciencedaily.com/releases/2009/08/090814100103.htm (accessed September 2, 2014).

Share This




More Mind & Brain News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins