Featured Research

from universities, journals, and other organizations

Scientists Identify Stomach’s Timekeepers Of Hunger

Date:
August 31, 2009
Source:
Rockefeller University
Summary:
Scientists have identified cells in the stomach that time the release of a hormone that makes animals anticipate food and eat even when they are not hungry. The finding, which has implications for the treatment of obesity, marks a landmark in the decades-long search for the timekeepers of hunger. The work reveals what the stomach "tells" the brain.

New York collaborators at Columbia and Rockefeller Universities have identified cells in the stomach that time the release of a hormone that makes animals anticipate food and eat even when they are not hungry. The finding, which has implications for the treatment of obesity, marks a landmark in the decades-long search for the timekeepers of hunger. The work reveals what the stomach “tells” the brain.

Rae Silver, head of the Laboratory of Neurobiology and Behavior at Columbia University and Helene L. and Mark N. Kaplan Professor at Barnard College, Joseph LeSauter, senior research scientist at Barnard, and their colleague Donald W. Pfaff, at Rockefeller University, are the first to show that these cells, which release a hormone called ghrelin, are controlled by a circadian clock that is set by mealtime patterns. They also show that the hormone’s release whets the appetite of mice, spurring them to actively search for and consume food, even when they are not hungry.

“Circadian clocks allow animals to anticipate daily events rather than just react to them,” notes LeSauter, first author of the paper. “The cells that produce ghrelin have circadian clocks that presumably synchronize the anticipation of food with metabolic cycles.”

The scientists show that the stomach cells release ghrelin into the general circulation before mealtime. The hormone triggers a flurry of food-seeking behavior such as digging in the bedding around the food hopper, and it also stimulates eating. These behaviors are part of the subjective experience of hunger.

LeSauter, who spearheaded the project, studied genetically engineered mice that lack the receptor that recognizes ghrelin and compared them with normal mice on identical feeding schedules. He found that the mice that lack the ghrelin receptor had normal overall activity throughout the day but began to forage for food much later and to a lesser extent than their normal counterparts. However, when foraging and other anticipatory behaviors actually began, foraging increased in a remarkably predictable manner in both sets of mice.

Pfaff believes that ghrelin, which is released from stomach cells and travels through the bloodstream to the brain, influences a decision-making process in brain cells. These brain cells are constantly deciding whether or not to eat and, as mealtime draws near, the presence of ghrelin increases the proportion of “yes” decisions. “We applied mathematics to precise behavioral data and then interpreted them in the context of neurobiology,” says Pfaff. “And that’s very, very rare.”

Previous studies have shown that people given ghrelin injections feel voraciously hungry and eat more at a buffet than they otherwise would. The new research suggests that the stomach tells the brain when to eat, and establishing a regular meal schedule will regulate the stomach’s release of ghrelin. “If you eat all the time, ghrelin secretion will not be well controlled,” says Silver. “It’s a good thing to eat meals at a regularly scheduled time of day.”

The research also suggests that ghrelin, the only known natural appetite stimulant made outside the brain, is a promising target for drug developers. Unlike drugs that focus on satiety, those that target ghrelin could help curb appetite before dieters take that first bite.


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. LeSauter et al. Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proceedings of the National Academy of Sciences, 2009; 106 (32): 13582 DOI: 10.1073/pnas.0906426106

Cite This Page:

Rockefeller University. "Scientists Identify Stomach’s Timekeepers Of Hunger." ScienceDaily. ScienceDaily, 31 August 2009. <www.sciencedaily.com/releases/2009/08/090829092042.htm>.
Rockefeller University. (2009, August 31). Scientists Identify Stomach’s Timekeepers Of Hunger. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2009/08/090829092042.htm
Rockefeller University. "Scientists Identify Stomach’s Timekeepers Of Hunger." ScienceDaily. www.sciencedaily.com/releases/2009/08/090829092042.htm (accessed August 30, 2014).

Share This




More Mind & Brain News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com
Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins