Featured Research

from universities, journals, and other organizations

Measuring The Next Successful Antennas For In-body Health Monitoring Devices

Date:
September 24, 2009
Source:
National Physical Laboratory
Summary:
Antennas for the latest implanted medical devices are being developed in the UK. In the near future, in-body medical devices such as pacemakers will use radio frequency (RF) technology to improve healthcare for patients. A low-powered, two-way wireless communications system linking an in-body device to a monitoring system can provide up-to-the minute patient data to allow doctors to adjust treatment as soon as it is needed.

This is the NPL Smart Chamber with Orbit roll over as positioner.
Credit: Image courtesy of National Physical Laboratory

Antennas for the latest implanted medical devices are being developed by Queen Mary University of London and tested through a unique piece of kit at the UK's National Physical Laboratory (NPL).

In the near future in-body medical devices such as pacemakers will use radio frequency (RF) technology to improve healthcare for patients. A low-powered, two-way wireless communications system linking an in-body device to a monitoring system can provide up-to-the minute patient data to allow doctors to adjust treatment as soon as it is needed. Devices will read data every night when the patient is asleep and send reports to the physician at the hospital, via the telephone system or Internet.

Antennas are vital to the operation of these systems. They need to be small, light, high performing but low-powered, have limited radiation directed at the wearer and be built into the implant. They also need to be made of a material that is biocompatible as well as a good electrical performer.

To ensure the wireless implants work with monitoring systems we need to be able to measure how the radio waves behave when transmitted. Coaxial cable is traditionally used to measure the performance of small electric antennas. However, electrically small antennas for wireless communications applications are can excite common mode currents on coaxial cables - producing unwanted radiation of common mode current and with it distorted results.

NPL , the UK's National Measurement Institute, has achieved a breakthrough in the non-invasive measurement of electrically small antennas. By connecting omni-directional antennas, to an optical fibre instead of a coaxial cable they were able to remove the effects of cable reflections and most notably the radiation of common mode current.

The system was put to the test by the Body-Centric Wireless Sensor Lab (BodyWiSe) at Queen Mary University of London led by Professor Yang Hao. Researchers Dr Marie Rajab, Dr George Palikaras and Andrea Sani have developed an implantable Radio Frequency Identification (RFID) tag made up of a PIFA antenna type that has been optimised to operate whilst embedded in an artificially fabricated three-layer structure representative of skin, fat and muscle.

The device was tested by both a standard coaxial cable and NPL's fibre optic set-up and the results were compared. The result showed that the use of the fibre optic system can significantly decrease measurement errors caused by flowing common mode currents, in this case by as much as 18 dB.

NPL's Martin Alexander, Principal Research Scientist, said:

"This breakthrough could help the development of the next generation of miniature in-body technology designed to save even more lives. NPL achieved it through a collaborative partnership with optical communications company Seikoh-giken. Together we developed a very small RF-optical converter which reproduces the RF signal in full and has a minimal effect on the antenna performance. A miniature RF-optical transducer enables an optical fibre connection to the antenna, thereby eliminating the large distortion associated with the unwanted radiation from a coaxial cable."


Story Source:

The above story is based on materials provided by National Physical Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

National Physical Laboratory. "Measuring The Next Successful Antennas For In-body Health Monitoring Devices." ScienceDaily. ScienceDaily, 24 September 2009. <www.sciencedaily.com/releases/2009/09/090908103638.htm>.
National Physical Laboratory. (2009, September 24). Measuring The Next Successful Antennas For In-body Health Monitoring Devices. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/09/090908103638.htm
National Physical Laboratory. "Measuring The Next Successful Antennas For In-body Health Monitoring Devices." ScienceDaily. www.sciencedaily.com/releases/2009/09/090908103638.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins