Featured Research

from universities, journals, and other organizations

New nanocrystalline diamond probes overcome wear

Date:
November 29, 2009
Source:
Northwestern University
Summary:
Researchers have developed, characterized, and modeled a new kind of probe used in atomic force microscopy, which images, measures, and manipulates matter at the nanoscale. Using diamond, researchers made a much more durable probe than the commercially available silicon nitride probes, which are typically used in AFM to gather information from a material, but can wear down after several uses.

Researchers at the McCormick School of Engineering and Applied Science at Northwestern University have developed, characterized, and modeled a new kind of probe used in atomic force microscopy (AFM), which images, measures, and manipulates matter at the nanoscale.

Related Articles


Using diamond, researchers made a much more durable probe than the commercially available silicon nitride probes, which are typically used in AFM to gather information from a material, but can wear down after several uses.

Horacio Espinosa, James and Nancy Farley Professor of Manufacturing and Entrepreneurship, and his graduate student Ravi Agrawal have shown that diamond atomic force microscopy probes are 10 times more durable than silicon nitride probes.

Their results were recently published in the Journal of Applied Physics.

"It is well-known that diamond should perform much better than other probe materials," says Espinosa. "However, rigorous quantification of wear and the development of models with predictive capabilities have remained elusive. It was exciting to discover that diamond probes are an order of magnitude more wear resistant than silicon nitride probes and that a single model can predict wear for both materials."

In the study, wear tests were performed using AFM probes made from different materials -- silicon nitride, ultrananocrystalline diamond (UNCD) and nitrogen-doped UNCD -- by scanning them across a hard UNCD substrate. Argonne National Laboratory, where UNCD was originally invented, also supported this work by providing nitrogen-doped UNCD. Probes were made in house and also provided by Advanced Diamond Technologies, Inc. (ADT).

"It took quite an effort to develop UNCD into a sharp tip. We needed to optimize the initial stages of diamond growth to form nanometer structures with consistent results. It is really nice to find that this work paid off to demonstrate that UNCD probes are quite wear resistant, which we predicted," said Nicolaie Moldovan, a former research professor at Northwestern University involved in the fabrication of the UNCD probes. Moldovan is now a microfabrication expert at Advanced Diamond Technologies, Inc.

In addition to characterizing the probe, researchers also created a model that can predict how a probe tip will wear.

"The development of a general model with predictive capabilities is a major milestone. This effort also provided insight into how the interfacial adhesion between the probe and substrate relates to the wear resistance of AFM probes," says Agrawal.

Neil Kane, president of ADT, said, "The results reported in this investigation are impressive in showing the improvement in wear resistance of diamond probes. This work in part inspired the development of our commercially available NaDiaProbesฎ."

The paper, authored by Agrawal, Moldovan, and Espinosa, was also selected for the October 5, 2009 issue of the Virtual Journal of Nanoscale Science and Technology, which is an edited compilation of links to articles from participating publishers covering a focused area of frontier research.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "New nanocrystalline diamond probes overcome wear." ScienceDaily. ScienceDaily, 29 November 2009. <www.sciencedaily.com/releases/2009/11/091110090900.htm>.
Northwestern University. (2009, November 29). New nanocrystalline diamond probes overcome wear. ScienceDaily. Retrieved April 25, 2015 from www.sciencedaily.com/releases/2009/11/091110090900.htm
Northwestern University. "New nanocrystalline diamond probes overcome wear." ScienceDaily. www.sciencedaily.com/releases/2009/11/091110090900.htm (accessed April 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, April 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

MINI Shows Off Augmented Reality Glasses

MINI Shows Off Augmented Reality Glasses

AP (Apr. 24, 2015) — MINI showcased its new augmented reality glasses at the Shanghai Auto Show this week, which designers say will make roads safer and allow the driver to see through opaque parts of the car. (April 24) Video provided by AP
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) — Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com
'Safest Bike Ever' Devised by British Entrepreneur

'Safest Bike Ever' Devised by British Entrepreneur

Reuters - Innovations Video Online (Apr. 23, 2015) — A British inventor says his Babel bike is the safest bicycle ever produced. Crispin Sinclair - son of famous British inventor Sir Clive Sinclair - hopes the bike&apos;s safety cage, double seatbelt, and host of other measures will inspire non-cyclists to get in the saddle. Jim Drury went to see it in action. Video provided by Reuters
Powered by NewsLook.com
First Successful Aerial Refueling of a Drone

First Successful Aerial Refueling of a Drone

Reuters - Innovations Video Online (Apr. 23, 2015) — The bat-wing U.S. Navy drone that became the first autonomous airplane to take off and land on an aircraft carrier accomplished yet another milestone on Wednesday, becoming the first unmanned aircraft to undergo aerial refueling. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins