Featured Research

from universities, journals, and other organizations

Alzheimer's: Immune system alterations in mouse brain reduces two characteristic features of disease

Date:
January 12, 2010
Source:
Cedars-Sinai Medical Center
Summary:
Using laboratory mice that had been bred to have brain changes similar to Alzheimer's disease, scientists were able to reduce two characteristic features of the disease by modifying the mice's immune systems with a special peptide related to the myelin sheath that insulates nerve cells and nerve fibers. As a result, anti-inflammatory cells were recruited from the blood into the brain, dampening the local inflammatory response.

Using laboratory mice that had been bred to have brain changes similar to Alzheimer's disease, scientists were able to reduce two characteristic features of the disease by modifying the mice's immune systems with a special peptide (MOG45D) related to the myelin sheath that insulates nerve cells and nerve fibers. As a result, anti-inflammatory cells were recruited from the blood into the brain, dampening the local inflammatory response.

An article published online by the Journal of Neurochemistry describes the immune intervention, its cellular and molecular mechanisms of action, and the effects on disease pathology.

The study was conducted by scientists at the Maxine Dunitz Neurosurgical Institute at Cedars-Sinai Medical Center and the Weizmann Institute of Science in Rehovot, Israel. Michal Schwartz, Ph.D., the article's senior author, and Maya Koronyo-Hamaoui, Ph.D., first author, are available to provide additional details.

Schwartz is visiting professor at the Center of Neuroimmunology and Neurogenesis in the Department of Neurosurgery at Cedars-Sinai Medical Center and professor of neuroimmunology at the Weizmann Institute in Rehovot, Israel. Koronyo-Hamaoui is assistant professor and principal investigator in the Neuroimmunology Laboratory in the Department of Neurosurgery at Cedars-Sinai.

The most frequent cause of senile dementia, Alzheimer's disease is associated with the overproduction of beta-amyloid peptides -- molecules that accumulate as sticky deposits in the brain. These "extra-cellular" plaques (accumulating on the exterior of neurons) damage the cells and interrupt cell-to-cell signaling. Abnormal protein tangles (neurofibrillary tangles) inside neurons also lead to cell dysfunction and death.

Researchers seek to defeat the disease in several ways: by preventing plaque formation; treating existing plaque deposits; and repairing or replacing injured neurons.

In this study, scientists modified the cellular and molecular immune environment in the brains of laboratory mice bred to model Alzheimer's disease with an altered myelin-derived peptide. This recruited anti-inflammatory cells into the brain, which diminished the effects of local inflammatory cells and boosted the action of an enzyme that degrades plaque and is associated with glial scar formation.

This study was supported in part by the Maxine Dunitz Neurosurgical Institute in the Cedars-Sinai Department of Neurosurgery and by the Burns & Allen Research Institute at Cedars-Sinai.


Story Source:

The above story is based on materials provided by Cedars-Sinai Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Cedars-Sinai Medical Center. "Alzheimer's: Immune system alterations in mouse brain reduces two characteristic features of disease." ScienceDaily. ScienceDaily, 12 January 2010. <www.sciencedaily.com/releases/2010/01/100107114726.htm>.
Cedars-Sinai Medical Center. (2010, January 12). Alzheimer's: Immune system alterations in mouse brain reduces two characteristic features of disease. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/01/100107114726.htm
Cedars-Sinai Medical Center. "Alzheimer's: Immune system alterations in mouse brain reduces two characteristic features of disease." ScienceDaily. www.sciencedaily.com/releases/2010/01/100107114726.htm (accessed July 23, 2014).

Share This




More Mind & Brain News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Do Obese Women Have 'Food Learning Impairment'?

Do Obese Women Have 'Food Learning Impairment'?

Newsy (July 18, 2014) Yale researchers tested 135 men and women, and it was only obese women who were deemed to have "impaired associative learning." Video provided by Newsy
Powered by NewsLook.com
Does Mixing Alcohol and Energy Drinks Boost Urge To Drink?

Does Mixing Alcohol and Energy Drinks Boost Urge To Drink?

Newsy (July 18, 2014) A new study suggests that mixing alcohol with energy drinks makes you want to keep the party going. Video provided by Newsy
Powered by NewsLook.com
Pot Cooking Class Teaches Responsible Eating

Pot Cooking Class Teaches Responsible Eating

AP (July 18, 2014) Following the nationwide trend of eased restrictions on marijuana use, pot edibles are growing in popularity. One Boston-area cooking class is teaching people how to eat pot responsibly. (July 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins