Featured Research

from universities, journals, and other organizations

How blood flow force protects blood vessels

Date:
February 1, 2010
Source:
University of Rochester Medical Center
Summary:
Most people know that exercise protects against heart attack and stroke, but researchers have spent 30 years unraveling the biochemistry behind the idea. Researchers have now revealed new details of how athletic hearts push blood through arteries with greater force and the force-sensitive chain reaction that protects arteries.

Most people know that exercise protects against heart attack and stroke, but researchers have spent 30 years unraveling the biochemistry behind the idea.but researchers have spent 30 years unraveling the biochemistry behind the idea. One answer first offered by researchers at the University of Rochester Medical Center is that athletic hearts push blood through arteries with greater force, which alone triggers reactions that protect against dangerous clogs in blood vessels.

In the latest study out of Rochester, published recently in the journal Blood, researchers demonstrated that they are very close to understanding every step in one flow-sensitive chain reaction that protects arteries. Each step provides an opportunity to mimic with drugs the proven ability of fast, steady blood flow to open up blood vessels and avert the inflammation and blood clots that come with atherosclerosis.

Past research at the Medical Center and elsewhere had determined that two genes, Krüppel-like factor 2 (KLF2) and endothelial nitric oxide synthase (eNOS), are turned on by blood flow force to reverse atherosclerosis, but not how. The current study found for the first time that flow causes a structural change in the enzyme histone deacetylase 5 (HDAC5), which in turn influences whether the two key genes are turned on.

"Obviously we should all be exercising to get our hearts pumping fast, which increases blood flow force through our vessels with all of these molecular benefits," said Zheng-Gen Jin, Ph.D., associate professor of Medicine within the Aab Cardiovascular Research Institute (CVRI) at the University of Rochester Medical Center, and corresponding author for the study. "Beyond that, the designers of future therapies may manipulate HDAC5 to fine-tune the action of protective genes."

Forcing It

The current study revolves around a signaling process called phosphorylation, in which enzymes called kinases attach a set of molecules called a phosphate group to a target to switch life processes on or off. In cells lining blood vessels (endothelial cells), the attachment of a phosphate group to an HDAC5 kicks it out of the cell's nucleus, perhaps by hiding a label that says it belongs there.

To study whether blood flow force represents one the signals that cause HDAC5 nuclear export, the team designed a virus to invade the cells and swap out the key building blocks that make possible its phosphorylation via blood flow force. Weiye Wang, also a member of the CVRI and first author of the paper, designed the virus. He also attached a fluorescent tag to HDAC5 in the mutated cells so the team could track it as it moved.

What the team found for the first time is that blood flow force (also called sheer stress) does indeed cause the phoshorylation, and export from the nucleus, of HDAC5 in endothelial cells. Importantly, the team also found that flow, by removing HDAC5 from the scene, forces it to break away from the molecule it usually attaches to in the nucleus: myocyte enhancer factor-2 (MEF2).

When free, MEF2 is known to drive the expression of Krüppel-like factor 2, which calls for increases in the supply of endothelial nitric oxide synthase (eNOS). eNOS then builds more of the nitric oxide that tells muscles surrounding arteries to relax, which increases blood flow and lowers blood pressure. When cells were engineered with HDAC5 incapable of being phosphorylated by flow, HDAC5 never left the nucleus, remained stuck to MEF2 and completely blocked the expression of KLF2 and eNOS.

Furthermore, taking away the ability of fast, steady flow to phosphorylate HDAC5 greatly weakened a second lifesaving benefit of flow: it prevents white blood cells from sticking to the cells lining blood vessels, an early, necessary step in the development of atherosclerosis. Fatty diets cause cholesterol deposits to build up within arterial walls, deposits that white blood cells "see" as infections and home in on to drive inflammatory disease. By increasing KLF2 expression, blood flow force is believed to prevent adhesion molecules on cells lining arteries from snagging white blood cells as they float by.

The team also showed through a series of experiments that flow-induced HDAC5 phosphorylation depends on the well known calcium/calmodulin pathway. The team theorizes that the force of flow changes the shape of calcium channels on the surface of endothelial cells, which enables calcium to rush into the cells and turn on calmodulin, which attaches to an as yet unidentified kinase that phosphorylates HDAC5.

Identifying such an enzyme would complete the first diagram of a flow-sensitive, protective signaling pathway. Jin's lab has zeroed in on calmodulin-dependent kinases as likely suspects, and is designing experiments that will shut down the genes coding for them to see if that stops the phosphorylation of HDAC5 by flow. Should that be the case, the team will seek to screen for drug candidates that encourage the action of these enzymes.

Along with Jin and Wang, the effort was led at the Aab CVRI by Chang Hoon Ha, Bong Sook Jhun and Chelsea Wong. Mukesh Jain led a partnering effort at the Case Western Reserve University School of Medicine. Much of the early work in area was done in the labs of Bradford Berk, M.D., Ph.D., CEO of the University of Rochester Medical Center, and Jun-ichi Abe, M.D., Ph.D., associate professor within the Aab CVRI. Funding for the work of Jin's team came from the American Heart Association, the American Diabetes Association and the National Heart, Lung and Blood Institute (NHLBI), part of the National Institutes of Health. The article was published online on Dec. 30, 2009.

"If we could free MEF2 from HDAC5 with a drug, we could mimic flow force to enhance KLF2 and eNOS expression and reverse inflammation in vessel walls," Jin said. "That promises to be extremely useful, and potentially to stave off disease underway in the blood vessels of humans."


Story Source:

The above story is based on materials provided by University of Rochester Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Rochester Medical Center. "How blood flow force protects blood vessels." ScienceDaily. ScienceDaily, 1 February 2010. <www.sciencedaily.com/releases/2010/01/100128165125.htm>.
University of Rochester Medical Center. (2010, February 1). How blood flow force protects blood vessels. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2010/01/100128165125.htm
University of Rochester Medical Center. "How blood flow force protects blood vessels." ScienceDaily. www.sciencedaily.com/releases/2010/01/100128165125.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) — Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) — Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) — At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) — The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins