Featured Research

from universities, journals, and other organizations

Battery-less radios developed

Date:
February 10, 2010
Source:
Interuniversity Microelectronics Centre (IMEC)
Summary:
Scientists report a 2.4GHz/915MHz wake-up receiver which consumes only 51W power. This record low power achievement opens the door to battery-less or energy-harvesting based radios for a wide range of applications including long-range RFID and wireless sensor nodes for logistics, smart buildings, healthcare etc.

Test board of IMEC and Holst Centre’s wake up receiver.
Credit: IMEC

At the International Solid State Circuit Conference, imec and Holst Centre report a 2.4GHz/915MHz wake-up receiver which consumes only 51W power. This record low power achievement opens the door to battery-less or energy-harvesting based radios for a wide range of applications including long-range RFID and wireless sensor nodes for logistics, smart buildings, healthcare etc.

Related Articles


Today's battery-operated wireless communication systems consume a lot of power at times when the radio does not have to transmit or receive data. This means that most of their time Bluetooth or WLAN radios on mobile phones are taking energy from the battery without adding functionality. Imec and Holst Centre's wake-up receiver with ultra-low power consumption and fast response time can be put in parallel with the conventional radio to switch it on when data needs to received or transmitted.

Imec and Holst Centre developed an innovative radio architecture based on double sampling to overcome the 1/f noise problem. This noise affects most low data rate (10-100kbps) radios. As a consequence, these radios traditionally have a higher power budget than higher data rate radios achieving the same performance. By using a double-sampling technique the offset and 1/f noise is reduced and consequently the sensitivity of the receiver improves proportionally as data-rate scales.

The wake-up receiver chip was implemented in a 90nm digital CMOS technology and occupies an area of 0.36mm2. Measurements on silicon show a sensitivity of -75dBm (SNR>12dB) for the 915MHz receiver at 100kbps OOK (on off keying) modulation. When scaling the data rate to 10kbps and filtering the out-of-band noise, the sensitivity is improved by 5dB. For the 2.4GHz receiver, the sensitivity is -64dBm and -69dBm for 100kbps and 10kbps data rate respectively.

"Within our wireless autonomous sensor system research, we aim to develop wireless sensor systems powered by energy harvested from the environment instead of using batteries. The power budget of such systems is only 100W for the DSP, radio and sensor. This ultra-low power radio of only 51W with small form factor is a major step forward to achieve our goal. It opens the door to many new battery-less applications such as long-range RFID, smart lighting, and sensor tags." said Bert Gyselinckx, general manager imec the Netherlands at Holst Centre.



Story Source:

The above story is based on materials provided by Interuniversity Microelectronics Centre (IMEC). Note: Materials may be edited for content and length.


Cite This Page:

Interuniversity Microelectronics Centre (IMEC). "Battery-less radios developed." ScienceDaily. ScienceDaily, 10 February 2010. <www.sciencedaily.com/releases/2010/02/100209124402.htm>.
Interuniversity Microelectronics Centre (IMEC). (2010, February 10). Battery-less radios developed. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/2010/02/100209124402.htm
Interuniversity Microelectronics Centre (IMEC). "Battery-less radios developed." ScienceDaily. www.sciencedaily.com/releases/2010/02/100209124402.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins