Featured Research

from universities, journals, and other organizations

Notch-blocking drugs kill brain cancer stem cells, yet multiple therapies may be needed

Date:
March 1, 2010
Source:
Johns Hopkins Medical Institutions
Summary:
Working with mice, scientists who tested drugs intended to halt growth of brain cancer stem cells -- a small population of cells within tumors that perpetuate cancer growth -- conclude that blocking these cells may be somewhat effective, but more than one targeted drug attack may be needed to get the job done.

Working with mice, Johns Hopkins scientists who tested drugs intended to halt growth of brain cancer stem cells -- a small population of cells within tumors that perpetuate cancer growth -- conclude that blocking these cells may be somewhat effective, but more than one targeted drug attack may be needed to get the job done.

One focus of attack is a chemical pathway within stem cells known as Notch, which scientists have shown is important for cancer stem cell growth. A new study published in the January 28 issue of Stem Cells by Charles Eberhart, M.D., Ph.D., associate professor of pathology, ophthalmology, and oncology at Johns Hopkins, now extends these findings to glioblastoma, the most common malignant brain tumor, and ultimately suggests other pathways and treatment with two or more drugs may need to be involved.

Eberhart based his conclusion on experiments in which he coaxed a glioblastoma cell line to form embryolike balls called neurospheres. Unlike most cells that will clump together in a culture dish, neurospheres -- more organized groups of neural cells -- can only form from stem cells. When Eberhart treated the neurospheres with a drug called GSI-18, which blocks the Notch pathway, the spheres were reduced by 70 percent or more. Eberhart also found that molecular markers typically found on the surface of brain cancer stem cells also plunged.

"This told us that the Notch pathway is a good target for drug development," says Eberhart, but further experiments suggested this approach may not be thorough enough.

In a second set of experiments, Eberhart collected the neurospheres that remained after treatment with the Notch-blocking drug and injected them into the brains of mice. The neurosphere transplants eventually grew into tumors and reignited the Notch pathway.

"This result suggested we didn't get rid of all the stem cells," says Eberhart, "so it's likely we may need to add more therapies or increase the dosage of Notch-blocking drugs."

The study by Eberhart identified additional molecular pathways, including Stat 3 and AKT, which are connected to Notch. He says that a combination of therapies blocking Notch and other pathways such as these could target brain cancer stem cells at several levels and possibly avoid drug resistance.

To test how a Notch-blocking drug worked in an animal model, Eberhart injected tumors into the brains of mice and let the cancer grow for two weeks. Then, at the tumor site, he implanted a polymer bead that was soaked in GSI-18. Five of six mice that received the drug-laden bead survived while all 12 that received a bead with no drug died.

Eberhart notes that Notch-targeting drugs can prove problematic in therapy because the Notch pathway is critically important for cells in the gut, helping cells there alternate between secreting mucus and absorbing nutrients. "A dosing regimen that preserves gut function has been developed, and forthcoming studies in humans will test whether it can kill the cancer stem cells."

Funds for this research were provided by the Accelerate Brain Cancer Cure Project Award, the American Brain Tumor Association, Voices Against Brain Cancer Research, the National Institutes of Health, and the Brain Tumor Funders Collaborative.

Research participants include Xing Fan, Thant S. Zhu, Mary E. Soules, and Caroline E. Talsma from the University of Michigan; Leila Khaki, Naheed Gul, Cheryl Koh, and Jiangyang Zhang from Johns Hopkins; Yue-Ming Li from Memorial Sloan-Kettering Cancer Center; Jarek Maciaczyck and Guido Nikkhah from the University of Freiberg; and Francesco DiMeco, Sara Piccirillo, and Angelo L. Vescovi from the University of Milan.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Notch-blocking drugs kill brain cancer stem cells, yet multiple therapies may be needed." ScienceDaily. ScienceDaily, 1 March 2010. <www.sciencedaily.com/releases/2010/02/100225172334.htm>.
Johns Hopkins Medical Institutions. (2010, March 1). Notch-blocking drugs kill brain cancer stem cells, yet multiple therapies may be needed. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2010/02/100225172334.htm
Johns Hopkins Medical Institutions. "Notch-blocking drugs kill brain cancer stem cells, yet multiple therapies may be needed." ScienceDaily. www.sciencedaily.com/releases/2010/02/100225172334.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Predicting Heart Transplant Rejection With a Blood Test

Predicting Heart Transplant Rejection With a Blood Test

Ivanhoe (Aug. 27, 2014) Now a new approach to rejection of donor organs could change the way doctors predict transplant rejection…without expensive, invasive procedures. Video provided by Ivanhoe
Powered by NewsLook.com
Better Braces That Vibrate

Better Braces That Vibrate

Ivanhoe (Aug. 27, 2014) The length of time you have to keep your braces on could be cut in half thanks to a new device that speeds up the process. Video provided by Ivanhoe
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Stroke in Young Adults

Stroke in Young Adults

Ivanhoe (Aug. 27, 2014) A stroke can happen at any time and affect anyone regardless of age. This mother chose to give her son independence and continue to live a normal life after he had a stroke at 18 years old. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins