Featured Research

from universities, journals, and other organizations

Compliant systems: Flexible yet strong materials allow aircraft wings to flex with air flow

Date:
March 14, 2010
Source:
Empa
Summary:
Researchers once wanted to build aircraft wings based on compliant systems, which would continually change shape in response to the air flow resistance, obviating the need for rigid flap and rudder surfaces. A range of different industries are interested in so-called "smart" systems because they can be used to make low-maintenance (and therefore economic) products such as medical tools and robot gripper arms.

An adaptive wing support structure can be constructed using compliant systems. It can be molded in one piece.
Credit: Image courtesy of Empa

Those who witnessed the first takeoff of an Airbus A380 Superjumbo from Zurich airport at the end of January know that elegant is not the right word for the aircraft. On the other hand it is perfect to describe a crane as it leaves the ground, rising in a seemingly weightless fashion. This is not just because of the difference in size and weight -- the bird uses its flying surfaces in a completely different manner to the machine. It steers itself by continually varying the geometry of its wings.

Flavio Campanile, head of a research group in Empa's Mechanics for Modeling and Simulation Laboratory, is convinced that aircraft can be made which move more elegantly and, above all, more economically through the air. "Sooner or later it will be possible to make wings without ailerons, flaps and thousands of individual parts. They will have in principle only one component, which continually changes shape."

Biomimetic wings -- that is, those based on designs seen in nature -- adapt perfectly to the airflow around them, and are light and energy efficient.

In order to put his ideas into practice, Campanile developed so-called "compliant systems" at Empa and the ETH, initially by himself and thereafter with a team of twelve colleagues. But aerodynamic surface design is not the only field in which the engineer is active. Campanile also intends to tackle concrete problems facing industry by making use of compliant systems. "Wherever machines are at work, compliant structures can be used to bring improvements," Campanile is convinced. In order to persuade industry of the gains to be made by using compliant systems, he has been financially supported by the Gebert Ruef Foundation for three years.

Solutions to industrial problems

As a result of his efforts, Campanile has succeeded in convincing diverse industrial partners from the medical technology and robotics fields of the advantages in using these novel systems based on innovative materials. In cooperation with these companies he has developed a range of solutions for instruments and tools which are made in one piece and therefore superior to the conventional devices they replace which use joints and hinges. The latter are complicated and expensive to produce and assemble, and also not cheap to maintain.

Compliant systems made of materials such as plastics, metal and composites are so designed that they transmit forces without using joints. They change shape because the material from which they are made undergoes elastic deformation, not through the use of rigid components which slide or roll over each other. This means that the new instruments suffer less wear and tear.

A robot gripper arm developed by Campanile's team consists of only 32 individual parts, is 60 per cent lighter than a conventional equivalent and costs about 98 per cent less to manufacture. "These figures must make car designers and mechanical engineers ears' prick up. To date they have made use of hardly any compliant structures," maintains Campanile. Success and the next steps

Michael Sauter, a colleague of Flavio Campanile, is one person who has successfully used the new technology. In a feasibility study he showed how a special bed using compliant structures could be used to prevent bedridden patients from developing bed sores. His idea has already won him several awards. Sauter is now working in his Empa spin-off firm, compliant concept GmbH, to bringing the nursing bed to the market in the near future.

Campanile himself prefers to carry on his research. "Designers and manufacturers expect a great deal, and the solutions are often very complex;" he explains. Currently two of his co-workers are working on doctoral dissertations at the ETH Zurich's Centre of Structure Technologies under the guidance of Paolo Ermanni. One is investigating ways to combine compliancy and lightweight construction techniques; the other is developing "active aeroelastic" wings which adapt to aerodynamic flow by changing shape, requiring practically no external energy to do so.


Story Source:

The above story is based on materials provided by Empa. Note: Materials may be edited for content and length.


Cite This Page:

Empa. "Compliant systems: Flexible yet strong materials allow aircraft wings to flex with air flow." ScienceDaily. ScienceDaily, 14 March 2010. <www.sciencedaily.com/releases/2010/03/100311092425.htm>.
Empa. (2010, March 14). Compliant systems: Flexible yet strong materials allow aircraft wings to flex with air flow. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2010/03/100311092425.htm
Empa. "Compliant systems: Flexible yet strong materials allow aircraft wings to flex with air flow." ScienceDaily. www.sciencedaily.com/releases/2010/03/100311092425.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins