Featured Research

from universities, journals, and other organizations

Helium rain on Jupiter explains lack of neon in atmosphere

Date:
March 23, 2010
Source:
University of California - Berkeley
Summary:
When the Galileo probe descended through Jupiter's atmosphere in 1995, it found neon to be one-tenth as abundant as predicted. This unexpected finding has led researchers to propose an explanation: at about 10,000 kilometers below the cloud tops, helium condenses into droplets and falls inward, dragging neon with it and depleting Jupiter's outer layers of neon as well as helium.

A slice through the interior of Jupiter shows the top layers that are depleted of helium and neon, the thin layer where helium drops condense and fall, and the deep interior where helium and neon again mix with metallic hydrogen.
Credit: Burkhard Militzer/UC Berkeley

On Earth, helium is a gas used to float balloons, as in the movie "Up." In the interior of Jupiter, however, conditions are so strange that, according to predictions by University of California, Berkeley, scientists, helium condenses into droplets and falls like rain. Helium rain was earlier proposed to explain the excessive brightness of Saturn, a gas giant like Jupiter, but one-third the mass.

On Jupiter, however, UC Berkeley scientists claim that helium rain is the best way to explain the scarcity of neon in the outer layers of the planet, the solar system's largest. Neon dissolves in the helium raindrops and falls towards the deeper interior where it re-dissolves, depleting the upper layers of both elements, consistent with observations.

"Helium condenses initially as a mist in the upper layer, like a cloud, and as the droplets get larger, they fall toward the deeper interior," said UC Berkeley post-doctoral fellow Hugh Wilson, co-author of a report appearing this week in the journal Physical Review Letters. "Neon dissolves in the helium and falls with it. So our study links the observed missing neon in the atmosphere to another proposed process, helium rain."

Wilson's co-author, Burkhard Militzer, UC Berkeley assistant professor of earth and planetary science and of astronomy, noted that "rain" -- the water droplets that fall on Earth -- is an imperfect analogy to what happens in Jupiter's atmosphere. The helium droplets form about 10,000 to 13,000 kilometers (6,000-8,000 miles) below the tops of Jupiter's hydrogen clouds, under pressures and temperatures so high that "you can't tell if hydrogen and helium are a gas or a liquid," he said. They're all fluids, so the rain is really droplets of fluid helium mixed with neon falling through a fluid of metallic hydrogen.

The researchers' prediction will help refine models of Jupiter's interior and the interiors of other planets, according to Wilson. Modeling planetary interiors has become a hot research area since the discovery of hundreds of extrasolar planets living in extreme environments around other stars. The study will also be relevant for NASA's Juno mission to Jupiter, which is scheduled to be launched next year.

Militzer and Wilson are among the modelers, using "density functional theory" to predict the properties of Jupiter's interior, specifically what happens to the dominant constituents -- hydrogen and helium -- as temperatures and pressures increase toward the center of the planet. These conditions are yet too extreme to be reproduced in the laboratory. Even experiments in diamond-anvil cells can only produce pressures at the Earth's core. In 2008, Militzer's computer simulations led to the conclusion that Jupiter's rocky core is surrounded by a thick layer of methane, water and ammonia ices that make it twice as large as earlier predictions.

The two modelers embarked on their current research because of a discovery by the Galileo probe that descended through Jupiter's atmosphere in 1995 and sent back measurements of temperature, pressure and elemental abundances until it was crushed under the weight of the atmosphere. All elements seemed to be as slightly enriched compared to the abundance on the sun -- which is assumed to be similar to the elemental abundances 4.56 billion years ago when the solar system formed -- except for helium and neon. Neon stood out because it was one-tenth as abundant as it is in the sun.

Their simulations showed that the only way neon could be removed from the upper atmosphere is to have it fall out with helium, since neon and helium mix easily, like alcohol and water. Militzer and Wilson's calculations suggest that at about 10,000 to 13,000 kilometers into the planet, where the temperature about 5,000 degrees Celsius and the pressure is 1 to 2 million times the atmospheric pressure on Earth, hydrogen turns into a conductive metal. Helium, not yet a metal, does not mix with metallic hydrogen, so it forms drops, like drops of oil in water.

This provided an explanation for the removal of neon from the upper atmosphere.

"As the helium and neon fall deeper into the planet, the remaining hydrogen-rich envelope is slowly depleted of both neon and helium," Militzer said. "The measured concentrations of both elements agree quantitatively with our calculations."

Saturn's helium rain was predicted because of a different observation: Saturn is warmer than it should be, based on its age and predicted rate of cooling. The falling rain releases heat that accounts for the difference.

Jupiter's temperature is in accord with models of its cooling rate and its age, and needed no hypothesis of helium rain until the discovery of neon depletion in the atmosphere. Interestingly, theoretician David Stevenson of the California Institute of Technology (Caltech) predicted neon depletion on Jupiter prior to the Galileo probe's measurements, but never published a reason for his guess.


Story Source:

The above story is based on materials provided by University of California - Berkeley. Note: Materials may be edited for content and length.


Journal References:

  1. Hugh F. Wilson and Burkhard Militzer. Sequestration of Noble Gases in Giant Planet Interiors. Physical Review Letters, 2010; 104: 121101 DOI: 10.1103/PhysRevLett.104.121101
  2. Jonathan Fortney. Peering into Jupiter. Physics, 2010; 3: 26 DOI: 10.1103/Physics.3.26

Cite This Page:

University of California - Berkeley. "Helium rain on Jupiter explains lack of neon in atmosphere." ScienceDaily. ScienceDaily, 23 March 2010. <www.sciencedaily.com/releases/2010/03/100322101527.htm>.
University of California - Berkeley. (2010, March 23). Helium rain on Jupiter explains lack of neon in atmosphere. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2010/03/100322101527.htm
University of California - Berkeley. "Helium rain on Jupiter explains lack of neon in atmosphere." ScienceDaily. www.sciencedaily.com/releases/2010/03/100322101527.htm (accessed October 22, 2014).

Share This



More Space & Time News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) — Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com
Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) — Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) — Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins