Featured Research

from universities, journals, and other organizations

Mini generators make energy from random ambient vibrations

Date:
March 24, 2010
Source:
University of Michigan
Summary:
Tiny generators could produce enough electricity from random, ambient vibrations to power a wristwatch, pacemaker or wireless sensor.

Miniature generators (such as the one above next to a typical AA battery), developed at U-M's Engineering Research Center for Wireless Integrated Microsystems, run on the random vibrations all around us.
Credit: Photo by Tzeno Galchev

Tiny generators developed at the University of Michigan could produce enough electricity from random, ambient vibrations to power a wristwatch, pacemaker or wireless sensor.

The energy-harvesting devices, created at U-M's Engineering Research Center for Wireless Integrated Microsystems, are highly efficient at providing renewable electrical power from arbitrary, non-periodic vibrations. This type of vibration is a byproduct of traffic driving on bridges, machinery operating in factories and humans moving their limbs, for example.

The Parametric Frequency Increased Generators (PFIGs) were created by Khalil Najafi, chair of electrical and computer engineering, and Tzeno Galchev, a doctoral student in the same department.

Most similar devices have more limited abilities because they rely on regular, predictable energy sources, said Najafi, who is the Schlumberger Professor of Engineering and also a professor in the Department of Biomedical Engineering.

"The vast majority of environmental kinetic energy surrounding us everyday does not occur in periodic, repeatable patterns. Energy from traffic on a busy street or bridge or in a tunnel, and people walking up and down stairs, for example, cause vibrations that are non-periodic and occur at low frequencies," Najafi said. "Our parametric generators are more efficient in these environments."

The researchers have built three prototypes and a fourth is forthcoming. In two of the generators, the energy conversion is performed through electromagnetic induction, in which a coil is subjected to a varying magnetic field. This is a process similar to how large-scale generators in big power plants operate.

The latest and smallest device, which measures one cubic centimeter, uses a piezoelectric material, which is a type of material that produces charge when it is stressed. This version has applications in infrastructure health monitoring. The generators could one day power bridge sensors that would warn inspectors of cracks or corrosion before human eyes could discern problems.

The generators have demonstrated that they can produce up to 0.5 milliwatts (or 500 microwatts) from typical vibration amplitudes found on the human body. That's more than enough energy to run a wristwatch, which needs between one and 10 microwatts, or a pacemaker, which needs between 10 and 50. A milliwatt is 1,000 microwatts.

"The ultimate goal is to enable various applications like remote wireless sensors and surgically implanted medical devices," Galchev said. "These are long lifetime applications where it is very costly to replace depleted batteries or, worse, to have to wire the sensors to a power source."

Batteries are often an inefficient way to power the growing array of wireless sensors being created today, Najafi said. Energy scavenging can provide a better option.

"There is a fundamental question that needs to be answered about how to power wireless electronic devices, which are becoming ubiquitous and at the same time very efficient," Najafi said. "There is plenty of energy surrounding these systems in the form of vibrations, heat, solar, and wind."

These generators could also power wireless sensors deployed in buildings to make them more energy efficient, or throughout large public spaces to monitor for toxins or pollutants.

The research is funded by the National Science Foundation, Sandia National Laboratories, and the National Institute of Standards and Technology.

The university is pursuing patent protection for the intellectual property. Galchev and a team of engineering and business students are working to commercialize the technology through their company, Enertia. Enertia recently won first place in the DTE/U-M Clean Energy Prize business plan competition and second place in the U-M Zell Lurie Institute for Entrepreneurial Studies' Michigan Business Challenge. Other members of the team are Erkan Aktakka, and Adam Carver. Aktakka is an electrical engineering doctoral student. Carver is an MBA student at the Ross School of Business.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University of Michigan. "Mini generators make energy from random ambient vibrations." ScienceDaily. ScienceDaily, 24 March 2010. <www.sciencedaily.com/releases/2010/03/100323105952.htm>.
University of Michigan. (2010, March 24). Mini generators make energy from random ambient vibrations. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2010/03/100323105952.htm
University of Michigan. "Mini generators make energy from random ambient vibrations." ScienceDaily. www.sciencedaily.com/releases/2010/03/100323105952.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com
3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

TheStreet (Apr. 22, 2014) Sales of motorcycles have continued to ride back from the depths of hell known as the Great Recession. Excluding scooters, sales of motorcycles increased 3% in 2013. In units, however, at 465,000 sold last year, the total remained about 50% below the peak hit in 2007. Industry leader Harley Davidson’s shareholders have benefited both by the industry recovery and positive headlines emanating from the company. Belus Capital Advisors CEO Brian Sozzi takes you beyond the headlines of the motorcycle maker. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins