Featured Research

from universities, journals, and other organizations

Antidepressants as treatment immediately following a stroke?

Date:
April 23, 2010
Source:
Buck Institute for Age Research
Summary:
A study in rodents shows the growth of new neurons, also known as neurogenesis, lessens the severity of stroke and dramatically improves function following a stroke. The research suggests that drugs shown to promote neurogenesis in rodents could have benefits for human stroke victims and that those drugs -- which include antidepressants and mood stabilizers such as lithium -- may be suitable for study in human clinical trials.

A study at the Buck Institute for Age Research suggests a new strategy for the treatment of stroke. Research in rodents shows the growth of new neurons, also known as neurogenesis, lessens the severity of stroke and dramatically improves function following a stroke. The research suggests that drugs shown to promote neurogenesis in rodents could have benefits for human stroke victims and that those drugs-which include antidepressants and mood stabilizers such as lithium-may be suitable for study in human clinical trials.

Results of the research appear the week of April 12 in the online edition of the Proceedings of the National Academy of Sciences.

"What this study shows more convincingly than in the past is that the production of new neurons after stroke is beneficial in rodents," said Buck faculty member and senior author David Greenberg, MD, PhD. "Assuming that neurogenesis is also beneficial in humans, drugs approved by the FDA for other purposes and already shown to promote new neuron growth in rodents might be worth studying as a potential treatment for stroke in humans. For example, antidepressants are often used to treat post-stroke depression, but their potential for improving outcome from stroke itself is less certain."

Previous research by the same group at the Buck Institute, which includes Drs. Kunlin Jin, Xiaomei Wang, Lin Xie and Xiao Mao, showed that the brain attempts to heal itself following stroke by growing new neurons, but it has not been shown clearly that those new neurons improve function.

About 795,000 Americans suffer a stroke each year. Stroke is the third leading cause of death in the U.S. and is the leading cause of serious long-term disability in this country. Treatments for stroke are limited. Clot busting drugs, which have to be given within hours of the stroke, have been of great benefit to a small number of patients, but stroke is not usually diagnosed in time for them to be used.

The Buck Institute study, which did not involve screening any of the existing drugs that support neurogenesis, compared stroke size and recovery in mice who were genetically altered and treated to either grow or not grow new neurons prior to stroke. Greenberg says strokes were about 30 percent larger in the animals that did not grow new neurons; the rodents that did grow new neurons showed dramatic improvement in motor function following the stroke. The exact mechanism by which the new neurons improve outcome is unknown.

Greenberg says future research at the Buck will likely involve testing drugs that stimulate neurogenesis at various dosages and treatment times to see if they improve outcome following stroke in rodents. Building on the Institute's collaborative approach to research involving other age-related disorders, Greenberg says its also likely that the impact of the growth of new neurons will be examined in animal models of Alzheimer's, Parkinson's and Huntington's disease.

Although the possibility of using existing drugs for the treatment of stroke is one that may excite patients and patient advocates, Greenberg urges caution. He says those suffering from stroke should not treat themselves, even with FDA-approved drugs, without medical advice. "Everything has potential side effects," said Greenberg. "Even taking something as seemingly innocuous as an antidepressant carries the possibility of making someone worse. These drugs need to be tested in a controlled clinical setting."

Other Buck Institute scientists involved in the study include Kunlin Jin, Xiaomei Wang, Lin Xie and Xiao Mao. The work was supported by US Public Health Service Grants AG21980 and NS4491 and NS62414.


Story Source:

The above story is based on materials provided by Buck Institute for Age Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kunlin Jin, Xiaomei Wang, Lin Xie, Xiao Ou Mao, David A. Greenberg. Transgenic ablation of doublecortin-expressing cells suppresses adult neurogenesis and worsens stroke outcome in mice. Proceedings of the National Academy of Sciences, 2010 DOI: 10.1073/pnas.1000154107

Cite This Page:

Buck Institute for Age Research. "Antidepressants as treatment immediately following a stroke?." ScienceDaily. ScienceDaily, 23 April 2010. <www.sciencedaily.com/releases/2010/04/100412151815.htm>.
Buck Institute for Age Research. (2010, April 23). Antidepressants as treatment immediately following a stroke?. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/04/100412151815.htm
Buck Institute for Age Research. "Antidepressants as treatment immediately following a stroke?." ScienceDaily. www.sciencedaily.com/releases/2010/04/100412151815.htm (accessed July 23, 2014).

Share This




More Mind & Brain News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Do Obese Women Have 'Food Learning Impairment'?

Do Obese Women Have 'Food Learning Impairment'?

Newsy (July 18, 2014) Yale researchers tested 135 men and women, and it was only obese women who were deemed to have "impaired associative learning." Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins