Featured Research

from universities, journals, and other organizations

Math goes to the movies

Date:
April 14, 2010
Source:
American Mathematical Society
Summary:
Whether it's an exploding fireball in "Star Wars: Episode 3," a swirling maelstrom in "Pirates of the Caribbean: At World's End," or beguiling rats turning out gourmet food in "Ratatouille," computer-generated effects have opened a whole new world of enchantment in cinema. All such effects are ultimately grounded in mathematics, which provides a critical translation from the physical world to computer simulations.

Whether it's an exploding fireball in "Star Wars: Episode 3," a swirling maelstrom in "Pirates of the Caribbean: At World's End," or beguiling rats turning out gourmet food in "Ratatouille," computer-generated effects have opened a whole new world of enchantment in cinema. All such effects are ultimately grounded in mathematics, which provides a critical translation from the physical world to computer simulations.

The use of mathematics in cinematic special effects is described in the article "Crashing Waves, Awesome Explosions, Turbulent Smoke, and Beyond: Applied Mathematics and Scientific Computing in the Visual Effects Industry," which will appear in the May 2010 issue of the Notices of the AMS. The article was written by three University of California, Los Angeles, mathematicians who have made significant contributions to research in this area: Aleka McAdams, Stanley Osher, and Joseph Teran.

Mathematics provides the language for expressing physical phenomena and their interactions, often in the form of partial differential equations. These equations are usually too complex to be solved exactly, so mathematicians have developed numerical methods and algorithms that can be implemented on computers to obtain approximate solutions. The kinds of approximations needed to, for example, simulate a firestorm, were in the past computationally intractable. With faster computing equipment and more-efficient architectures, such simulations are feasible today -- and they drive many of the most spectacular feats in the visual effects industry.

Another motivation for development in this area of research is the need to provide a high level of controllability in the outcome of a simulation in order to fulfill the artistic vision of scenes. To this end, special effects simulation tools, while physically based, must be able to be dynamically controlled in an intuitive manner in order to ensure believability and the quality of the effect.

The area of computational fluid dynamics (CFD) provides many of the tools used in simulations of phenomena such as smoke, fire, and water. Before the use of CFD, computer-generated special effects such as explosions were driven by force fields applied to passive unconnected particles, a method that produced rather unrealistic results. Today, a combination of improved hardware and faster algorithms for CFD models have made such special effects much more realistic. CFD has also been used, unsurprisingly, to simulate water-based phenomena; in fact, such water simulation techniques were recognized by an Academy Award for Technical Achievement for the mathematician/computer scientist Ronald Fedkiw of Stanford University.

Mathematics also plays a key role in computer-generated animations of all kinds of solids, from animated characters to cityscapes. Virtually every computer-generated solid has an explicit mathematical representation as a meshed surface or volume. Flesh simulations can endow computer-generated characters with realistically bulging muscles and rippling fat. Hair simulation provides a realistic way to depict the highly complex phenomenon of thousands of hairs interacting and colliding. The article describes recent work by the the first and third authors that provides a new technique for hair simulation.

The effects industry is emerging as an exciting new frontier for mathematicians, one that uniquely combines mathematical insights with the art of moviemaking.


Story Source:

The above story is based on materials provided by American Mathematical Society. Note: Materials may be edited for content and length.


Journal Reference:

  1. Aleka McAdams, Stanley Osher, and Joseph Teran. Crashing Waves, Awesome Explosions, Turbulent Smoke and Beyond: Applied Mathematics and Scientific Computing in the Visual Effects Industry. Notices of the AMS, 2010; 57 (5): 614-623 [link]

Cite This Page:

American Mathematical Society. "Math goes to the movies." ScienceDaily. ScienceDaily, 14 April 2010. <www.sciencedaily.com/releases/2010/04/100414071221.htm>.
American Mathematical Society. (2010, April 14). Math goes to the movies. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2010/04/100414071221.htm
American Mathematical Society. "Math goes to the movies." ScienceDaily. www.sciencedaily.com/releases/2010/04/100414071221.htm (accessed October 21, 2014).

Share This



More Computers & Math News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Apple Enters Mobile Payment Business

Apple Enters Mobile Payment Business

AP (Oct. 20, 2014) Apple is making a strategic bet with the launch of Apple Pay, the mobile pay service aimed at turning your iPhone into your wallet. (Oct. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins