Featured Research

from universities, journals, and other organizations

Breakthrough in nano-optics: Researchers develop plasmonic amplifier

Date:
June 1, 2010
Source:
University of Cologne
Summary:
Researchers have demonstrated net optical amplification in a plasmonic waveguide. The results represent an important breakthrough in the field of plasmonics. Optical amplification is the only feasible strategy to make light travel over sizable distances when it is bound in a plasmonic mode. Achieving such a macroscopic propagation of surface plasma waves is critical for many applications of the emerging plasmonics technology, which range from compact communication devices and optical computing to the detection and characterization of cells, virus particles or even single molecules.

Researchers at the University of Iceland, University of Cologne and the Fraunhofer Institute Jena have demonstrated net optical amplification in a plasmonic waveguide.

Related Articles


The results of the team, which were published in the journal Nature Photonics, represent an important breakthrough in the field of plasmonics. Optical amplification is the only feasible strategy to make light travel over sizable distances when it is bound in a plasmonic mode. Achieving such a macroscopic propagation of surface plasma waves is critical for many applications of the emerging plasmonics technology, which range from compact communication devices and optical computing to the detection and characterization of cells, virus particles or even single molecules.

Research on plasmonics, a relatively new branch of optics, has received an increasing level of international attention over the last decade. This interest is mainly driven by the fact that surface plasmons, travelling along the interface between a metal and a dielectric, allow confining optical energy to volumes that are significantly smaller than those accessible with conventional dielectric waveguiding structures such as optical fibers.

Apart from being of fundamental interest on its own, tightly focused optical energy can be used as a 'nano-probe' which provides valuable measurements in fields like solid-state physics, chemistry and the life sciences. In addition, the tight confinement of the optical field is an interesting feature as it promises optical devices with reduced dimensions. This is of particular relevance for the field of optical communications, optical computing and hybrid microelectronic/optical circuits. However, under normal circumstances, optical energy travels over very short distances in plasmonic waveguides, before it is absorbed due to Ohmic loss in the metal.

Although clever design can somewhat increase the useful length of plasmonic waveguides, it is widely accepted that the only way to completely overcome this problem is to add a mechanism that continuously amplifies the light as it travels along the plasmonic waveguide.

However, integrating such plasmonic amplification has turned out to be a challenging task. The team consisting of researchers from the University of Iceland, from Harvard University, and from the University of Cologne and the Fraunhofer Institute in Germany, developed a structure that provides sufficient amplification to overcome the intrinsic absorption of a plasmonic waveguide. In fact, the optical amplification is sufficient to provide a net gain of the plasmon-bound light as it travels along the waveguide. The researchers used a structure consisting of an ultra-thin gold film that was embedded in a highly fluorescent polymer, optically pumped by an ultrafast laser source. The structure was designed to channel the light generated by the fluorescent polymer to the plasmonic waveguide. As the plasmonic wave travels along the waveguide, its intensity is increased by stimulated emission of the optical energy stored in the fluorescent polymer.

"For many years the propagation loss issue in plasmonic waveguides has been a major hurdle for the development of devices that make use of surface plasmon effects," says Klaus Meerholz. "The key to the success of our work was that we found a way to embed the plasmonic waveguides into an amplifying fluorescent polymer without affecting the properties of the waveguide too much," explains Malte Gather.


Story Source:

The above story is based on materials provided by University of Cologne. Note: Materials may be edited for content and length.


Journal Reference:

  1. Malte C. Gather, Klaus Meerholz, Norbert Danz, Kristjan Leosson. Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nature Photonics, 2010; DOI: 10.1038/nphoton.2010.121

Cite This Page:

University of Cologne. "Breakthrough in nano-optics: Researchers develop plasmonic amplifier." ScienceDaily. ScienceDaily, 1 June 2010. <www.sciencedaily.com/releases/2010/05/100531115548.htm>.
University of Cologne. (2010, June 1). Breakthrough in nano-optics: Researchers develop plasmonic amplifier. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2010/05/100531115548.htm
University of Cologne. "Breakthrough in nano-optics: Researchers develop plasmonic amplifier." ScienceDaily. www.sciencedaily.com/releases/2010/05/100531115548.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Humanoid Robot Can Recognise and Interact With People

Humanoid Robot Can Recognise and Interact With People

Reuters - Innovations Video Online (Apr. 20, 2015) An ultra-realistic humanoid robot called &apos;Han&apos; recognises and interprets people&apos;s facial expressions and can even hold simple conversations. Developers Hanson Robotics hope androids like Han could have uses in hospitality and health care industries where face-to-face communication is vital. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Drones and Health Apps at Santiago's "Robotics Day"

Drones and Health Apps at Santiago's "Robotics Day"

AFP (Apr. 20, 2015) Latin American robotics experts gather in Santiago, Chile for "Robotics Day". Video provided by AFP
Powered by NewsLook.com
Japan Humanoid Robot Receives Customers at Department Store

Japan Humanoid Robot Receives Customers at Department Store

AFP (Apr. 20, 2015) She can smile, she can sing and she can give you guidance at one of the most upscale department stores in Tokyo...a female-looking humanoid makes her debut as a receptionist Video provided by AFP
Powered by NewsLook.com
Pee-Power Toilet to Light Up Disaster Zones

Pee-Power Toilet to Light Up Disaster Zones

Reuters - Innovations Video Online (Apr. 20, 2015) Students and staff are being asked to use a prototype urinal to &apos;donate&apos; urine to fuel microbial fuel cell (MFC) stacks that generate electricity to power lighting. The developers hope the pee-power technology will light toilet cubicles in refugee camps, where women are often at risk of assault in poorly lit sanitation areas. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins