Featured Research

from universities, journals, and other organizations

Breakthrough in nano-optics: Researchers develop plasmonic amplifier

Date:
June 1, 2010
Source:
University of Cologne
Summary:
Researchers have demonstrated net optical amplification in a plasmonic waveguide. The results represent an important breakthrough in the field of plasmonics. Optical amplification is the only feasible strategy to make light travel over sizable distances when it is bound in a plasmonic mode. Achieving such a macroscopic propagation of surface plasma waves is critical for many applications of the emerging plasmonics technology, which range from compact communication devices and optical computing to the detection and characterization of cells, virus particles or even single molecules.

Researchers at the University of Iceland, University of Cologne and the Fraunhofer Institute Jena have demonstrated net optical amplification in a plasmonic waveguide.

The results of the team, which were published in the journal Nature Photonics, represent an important breakthrough in the field of plasmonics. Optical amplification is the only feasible strategy to make light travel over sizable distances when it is bound in a plasmonic mode. Achieving such a macroscopic propagation of surface plasma waves is critical for many applications of the emerging plasmonics technology, which range from compact communication devices and optical computing to the detection and characterization of cells, virus particles or even single molecules.

Research on plasmonics, a relatively new branch of optics, has received an increasing level of international attention over the last decade. This interest is mainly driven by the fact that surface plasmons, travelling along the interface between a metal and a dielectric, allow confining optical energy to volumes that are significantly smaller than those accessible with conventional dielectric waveguiding structures such as optical fibers.

Apart from being of fundamental interest on its own, tightly focused optical energy can be used as a 'nano-probe' which provides valuable measurements in fields like solid-state physics, chemistry and the life sciences. In addition, the tight confinement of the optical field is an interesting feature as it promises optical devices with reduced dimensions. This is of particular relevance for the field of optical communications, optical computing and hybrid microelectronic/optical circuits. However, under normal circumstances, optical energy travels over very short distances in plasmonic waveguides, before it is absorbed due to Ohmic loss in the metal.

Although clever design can somewhat increase the useful length of plasmonic waveguides, it is widely accepted that the only way to completely overcome this problem is to add a mechanism that continuously amplifies the light as it travels along the plasmonic waveguide.

However, integrating such plasmonic amplification has turned out to be a challenging task. The team consisting of researchers from the University of Iceland, from Harvard University, and from the University of Cologne and the Fraunhofer Institute in Germany, developed a structure that provides sufficient amplification to overcome the intrinsic absorption of a plasmonic waveguide. In fact, the optical amplification is sufficient to provide a net gain of the plasmon-bound light as it travels along the waveguide. The researchers used a structure consisting of an ultra-thin gold film that was embedded in a highly fluorescent polymer, optically pumped by an ultrafast laser source. The structure was designed to channel the light generated by the fluorescent polymer to the plasmonic waveguide. As the plasmonic wave travels along the waveguide, its intensity is increased by stimulated emission of the optical energy stored in the fluorescent polymer.

"For many years the propagation loss issue in plasmonic waveguides has been a major hurdle for the development of devices that make use of surface plasmon effects," says Klaus Meerholz. "The key to the success of our work was that we found a way to embed the plasmonic waveguides into an amplifying fluorescent polymer without affecting the properties of the waveguide too much," explains Malte Gather.


Story Source:

The above story is based on materials provided by University of Cologne. Note: Materials may be edited for content and length.


Journal Reference:

  1. Malte C. Gather, Klaus Meerholz, Norbert Danz, Kristjan Leosson. Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nature Photonics, 2010; DOI: 10.1038/nphoton.2010.121

Cite This Page:

University of Cologne. "Breakthrough in nano-optics: Researchers develop plasmonic amplifier." ScienceDaily. ScienceDaily, 1 June 2010. <www.sciencedaily.com/releases/2010/05/100531115548.htm>.
University of Cologne. (2010, June 1). Breakthrough in nano-optics: Researchers develop plasmonic amplifier. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2010/05/100531115548.htm
University of Cologne. "Breakthrough in nano-optics: Researchers develop plasmonic amplifier." ScienceDaily. www.sciencedaily.com/releases/2010/05/100531115548.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins