Featured Research

from universities, journals, and other organizations

New answers on rare childhood disease

Date:
June 1, 2010
Source:
Sanford-Burnham Medical Research Institute
Summary:
Researchers have created a mouse model for multiple hereditary exostoses, a debilitating, childhood bone disease, which can only be treated with surgery. Now begins the search for new treatments.

Children born with multiple hereditary exostoses (MHE) suffer from abnormal growths on their bones. These bony protrusions stunt their growth and can cause pain and disfigurement. Scientists have long known which genes are mutated in this rare disease, but not how the mutations lead to abnormal bone growth. Even attempts at replicating the symptoms in mice have been unsuccessful, hampering the search for treatments. In a study published May 31 in Proceedings of the National Academy of Sciences, researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) and their colleagues created a new mouse model that mimics the disease in humans, providing new opportunities to test treatments.

Related Articles


"MHE is not usually deadly, but it is debilitating," said Yu Yamaguchi, M.D., Ph.D., senior author of the study and professor in the Sanford Children's Health Research Center at Sanford-Burnham. "And if not removed by surgery, there is a chance these bone growths will become cancerous."

In humans, MHE is caused by a mutation in one of two genes, Ext1 or Ext2. Together, these genes encode an enzyme necessary to produce heparan sulfate -- a long sugar chain that facilitates cell signals that direct bone cell growth and proliferation. But when these genes were inactivated in mice just as they are in human MHE patients, the mice failed to develop the symptoms of MHE. This had scientists scratching their heads.

Enter Dr. Yamaguchi and his colleagues, who took a different approach. Instead of knocking out the Ext1 gene in the whole mouse, they targeted the gene only in bone cells. Moreover, they deleted the gene in only a small fraction of these cells. Surprisingly, this minimalistic approach led to a mouse with all the physical manifestations of MHE, such as bony protrusions, short stature and other skeletal deformities.

The new mouse model answered some long-standing questions about MHE. Scientists had gone back and forth on whether the abnormal growths observed in MHE are true tumors or just malformations of the bone. In this study, the protrusions were made up of two cell types. A minority were mutant cells lacking Ext1, but, amazingly, most were normal bone cells. True tumors, in the strictest sense, arise from the proliferation of mutant cells only. Hence, MHE bone protrusions must result from a different -- though still very serious -- type of growth.

"I have been waiting 13 years for this breakthrough," said Sarah Ziegler, vice president of The MHE Research Foundation, which has provided seed funding for Dr. Yamaguchi's research. "My son had more than a 100 of these tumors and has gone through 15 surgeries. When your child has such a debilitating condition, and you know there's nothing you can do, it's petrifying. Now we have hope."

While this study takes MHE research a giant step forward, more questions remain. For one, it is still unknown how a few mutant bone cells can convince normal cells to divide and proliferate abnormally. Researchers hope that this MHE model will help solve that mystery, as well as provide leads for new treatments.

"This new mouse system also provides a platform for screening potential drugs that inhibit bone growths in MHE," Dr. Yamaguchi explained. "We are currently developing chemical inhibitors to block their formation."


Story Source:

The above story is based on materials provided by Sanford-Burnham Medical Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matsumoto K, Irie F, Mackem S, Yamaguchi Y. A mouse model of chondrocyte-specific somatic mutation reveals a role for Ext1 loss of heterozygosity in multiple hereditary exostoses. Proceedings of the National Academy of Sciences, 2010

Cite This Page:

Sanford-Burnham Medical Research Institute. "New answers on rare childhood disease." ScienceDaily. ScienceDaily, 1 June 2010. <www.sciencedaily.com/releases/2010/06/100601101554.htm>.
Sanford-Burnham Medical Research Institute. (2010, June 1). New answers on rare childhood disease. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2010/06/100601101554.htm
Sanford-Burnham Medical Research Institute. "New answers on rare childhood disease." ScienceDaily. www.sciencedaily.com/releases/2010/06/100601101554.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins