Featured Research

from universities, journals, and other organizations

Ultra-precise optical systems for space

Date:
October 12, 2010
Source:
Fraunhofer-Gesellschaft
Summary:
Metal mirrors made with extremely high precision and exactly positioned are the key elements of modern telescopes. A new production technique enables complex optical surfaces to be manufactured with excellent trueness of shape and hitherto unattained positional accuracy. The mirrors have been built for an infrared sounder telescope.

The M2/M3 assembly with two exactly aligned aspherical mirrors from the IRS-Tel reflecting telescope was produced with extremely high precision by using additional reference marks.
Credit: Copyright Fraunhofer IOF

Metal mirrors made with extremely high precision and exactly positioned are the key elements of modern telescopes. A new production technique enables complex optical surfaces to be manufactured with excellent trueness of shape and hitherto unattained positional accuracy. The mirrors have been built for an infrared sounder telescope.

For space research as well as climate observation and weather forecasting satellites need increasingly powerful optical measurement and recording devices. They often consist of several aspherically shaped mirror elements which through their precise interplay provide the desired reflection of the incident light. "All the mirrors must be produced and characterized with extreme precision, that is to an accuracy of less than one micrometer. They also have to be exactly positioned in relation to each other," explains Sebastian Scheiding from the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena. Up to now this positioning has been very time consuming as it takes place step by step. First the individual mirrors are fitted in the telescope one after the other, then the imaging quality is measured. If inaccuracies or errors are found, they are corrected by positional adjustments to the mirrors. Then further measurements and adjustments are made until all components are optimally arranged.

"We wanted to simplify this complicated and time-consuming adjustment process," says Scheiding. In the research project initiated by the German Aerospace Center (DLR) the scientist has therefore developed an innovative production technique which takes into account the later alignment of the components right from the outset. For this purpose, the individual mirror surfaces are positioned in relation to each other as precisely during processing as they will be later in the telescope. This reduces to a minimum the errors and corrections made when the mirrors are being fitted. The assembly process is simple and reproducible.

"The trick is that we mount all the mirrors for a module in the same machine at the same time and assign them to a common system of coordinates. To this end, each mirror blank is provided with defined, ultra-precise measurement marks and reference surfaces," explains Scheiding. These fixed marks embody the system of coordinates for diamond turning of the mirror shapes. At the same time, however, they fix the position of each mirror in relation to the adjacent mirrors. Finally they also serve as reference points for subsequent measurement processes to check the quality of the optical system.

The IOF demonstrates the degree of precision that can be achieved by such reference structures on the example of a mirror arrangement for an infrared sounder telescope (IRS-TEL). It incorporates two mirror modules, each of which has two juxtaposed aluminum mirror surfaces. The shape of the metal mirror deviates only 126 nanometers from the ideal aspherical shape and the position of two mirrors in relation to each other is ten times more precise than for comparable conventionally produced mirror assemblies. "As a result we can make optical systems of this type to a far greater degree of accuracy, but at the same time we're cheaper because the time-consuming adjustment process during final assembly is no longer required," says Scheiding.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Ultra-precise optical systems for space." ScienceDaily. ScienceDaily, 12 October 2010. <www.sciencedaily.com/releases/2010/06/100614093625.htm>.
Fraunhofer-Gesellschaft. (2010, October 12). Ultra-precise optical systems for space. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/06/100614093625.htm
Fraunhofer-Gesellschaft. "Ultra-precise optical systems for space." ScienceDaily. www.sciencedaily.com/releases/2010/06/100614093625.htm (accessed July 25, 2014).

Share This




More Space & Time News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com
Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins