Featured Research

from universities, journals, and other organizations

Ultra-precise optical systems for space

Date:
October 12, 2010
Source:
Fraunhofer-Gesellschaft
Summary:
Metal mirrors made with extremely high precision and exactly positioned are the key elements of modern telescopes. A new production technique enables complex optical surfaces to be manufactured with excellent trueness of shape and hitherto unattained positional accuracy. The mirrors have been built for an infrared sounder telescope.

The M2/M3 assembly with two exactly aligned aspherical mirrors from the IRS-Tel reflecting telescope was produced with extremely high precision by using additional reference marks.
Credit: Copyright Fraunhofer IOF

Metal mirrors made with extremely high precision and exactly positioned are the key elements of modern telescopes. A new production technique enables complex optical surfaces to be manufactured with excellent trueness of shape and hitherto unattained positional accuracy. The mirrors have been built for an infrared sounder telescope.

For space research as well as climate observation and weather forecasting satellites need increasingly powerful optical measurement and recording devices. They often consist of several aspherically shaped mirror elements which through their precise interplay provide the desired reflection of the incident light. "All the mirrors must be produced and characterized with extreme precision, that is to an accuracy of less than one micrometer. They also have to be exactly positioned in relation to each other," explains Sebastian Scheiding from the Fraunhofer Institute for Applied Optics and Precision Engineering IOF in Jena. Up to now this positioning has been very time consuming as it takes place step by step. First the individual mirrors are fitted in the telescope one after the other, then the imaging quality is measured. If inaccuracies or errors are found, they are corrected by positional adjustments to the mirrors. Then further measurements and adjustments are made until all components are optimally arranged.

"We wanted to simplify this complicated and time-consuming adjustment process," says Scheiding. In the research project initiated by the German Aerospace Center (DLR) the scientist has therefore developed an innovative production technique which takes into account the later alignment of the components right from the outset. For this purpose, the individual mirror surfaces are positioned in relation to each other as precisely during processing as they will be later in the telescope. This reduces to a minimum the errors and corrections made when the mirrors are being fitted. The assembly process is simple and reproducible.

"The trick is that we mount all the mirrors for a module in the same machine at the same time and assign them to a common system of coordinates. To this end, each mirror blank is provided with defined, ultra-precise measurement marks and reference surfaces," explains Scheiding. These fixed marks embody the system of coordinates for diamond turning of the mirror shapes. At the same time, however, they fix the position of each mirror in relation to the adjacent mirrors. Finally they also serve as reference points for subsequent measurement processes to check the quality of the optical system.

The IOF demonstrates the degree of precision that can be achieved by such reference structures on the example of a mirror arrangement for an infrared sounder telescope (IRS-TEL). It incorporates two mirror modules, each of which has two juxtaposed aluminum mirror surfaces. The shape of the metal mirror deviates only 126 nanometers from the ideal aspherical shape and the position of two mirrors in relation to each other is ten times more precise than for comparable conventionally produced mirror assemblies. "As a result we can make optical systems of this type to a far greater degree of accuracy, but at the same time we're cheaper because the time-consuming adjustment process during final assembly is no longer required," says Scheiding.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Ultra-precise optical systems for space." ScienceDaily. ScienceDaily, 12 October 2010. <www.sciencedaily.com/releases/2010/06/100614093625.htm>.
Fraunhofer-Gesellschaft. (2010, October 12). Ultra-precise optical systems for space. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2010/06/100614093625.htm
Fraunhofer-Gesellschaft. "Ultra-precise optical systems for space." ScienceDaily. www.sciencedaily.com/releases/2010/06/100614093625.htm (accessed September 15, 2014).

Share This



More Space & Time News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

SpaceX's Elon Musk Really Wants To Colonize Mars

SpaceX's Elon Musk Really Wants To Colonize Mars

Newsy (Sep. 14, 2014) Elon Musk has been talking about his goal of colonizing Mars for years now, but how much of it does he actually have figured out, and is it possible? Video provided by Newsy
Powered by NewsLook.com
International Space Station Crew Returns Safely To Earth

International Space Station Crew Returns Safely To Earth

Newsy (Sep. 11, 2014) The three-man crew touched down in Kazakhstan Wednesday after more than five months of science experiments in orbit. Video provided by Newsy
Powered by NewsLook.com
Solar Storm To Hit This Weekend, Scientists Not Worried

Solar Storm To Hit This Weekend, Scientists Not Worried

Newsy (Sep. 11, 2014) Two solar flares which erupted in our direction this week will arrive this weekend. The resulting solar storm will be powerful but not dangerous. Video provided by Newsy
Powered by NewsLook.com
Solar Flare Surges Off Sun

Solar Flare Surges Off Sun

Reuters - US Online Video (Sep. 11, 2014) NASA captures video of a significant flare surging off the sun. Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins