Featured Research

from universities, journals, and other organizations

Hop, jump and stick; Robots designed with insect instincts

Date:
June 28, 2010
Source:
Ecole Polytechnique Federale de Lausanne (EPFL)
Summary:
A swarm of flying robots soars into a blazing forest fire. With insect-like precision and agility, the machines land on tree trunks and bound over rough terrain before deploying crucial sensors and tools to track the inferno and its effects. This is a scenario one researcher thinks may not be so far off.

Mirko Kovac with a model of his head-first perching mechanism for miniature robots.
Credit: Image courtesy of EPFL

A swarm of flying robots soars into a blazing forest fire. With insect-like precision and agility, the machines land on tree trunks and bound over rough terrain before deploying crucial sensors and tools to track the inferno and its effects. This is a scenario that Mirko Kovac, from EPFL's Laboratory of Intelligent Systems, thinks may not be so far off.

Swarm robotics is offering innovative solutions to real-world problems by creating a new form of artificial intelligence based on insect-like instincts. Mirko Kovac, from EPFL's Laboratory of Intelligent Systems, is a young robotics engineer who has already made leaps forward in the field with his grasshopper-inspired jumping robot. He and his collaborators have created an innovative perching mechanism where the robot flies head first into the object, a tree for example -- without being destroyed -- and attaches to almost any type of surface using sharp prongs. It then detaches on command. The goal is to create robots that can travel in swarms over rough terrain to come to the aide of catastrophe victims.

"We are not blindly imitating nature, but using the same principles to possibly improve on it," explains Kovac, who recently finished his doctoral studies as EPFL. "Simple behavioral laws such as jumping, flying and perching lead to complex control over movement without the need for high computational power."

Jumping, gliding and perching allow for mobility over rocky territory or destroyed urban areas. This new form of AI takes its inspiration from the insect world, but is more as an abstract reflection on their instincts and design principles than merely imitating their morphology. This simplicity allows for greater mobility since the robots are not bogged down with heavy batteries. Kovac imagines swarms of his robots equipped with different sensors and small cameras that could be deployed over devastated areas to transmit essential information back to rescue command centers.

The labs most recent innovation, perching a robot, saves valuable energy by allowing the robot to rest like insects or birds do. Many previous perching mechanisms include a complicated swooping maneuver to decrease momentum and land on legs, often without the ability of detaching. The mechanism developed by Dr Kovac and Jόrg Markus Germann, recently published in the Journal of Micro-Nano Mechatronics, avoids this problem by using two spring-loaded arms fitted with pins that dig into the surface, whether it is wood or concrete. The snapping of the arms creates a forward momentum, allowing for a soft deceleration of the glider and avoiding mechanical damage. A remotely controlled mini-motor then detracts the pins and allows the robot to continue on its way.

"I am fascinated by the creative process," says Kovac, "and how it is possible to use the sophistication found in nature to create something completely new." The perching mechanism can be easily adapted to other robots. His previous robot, a quarter-gram jumping robot that can achieve heights of up to four and a half feet, could now be fitted with the new perching mechanism as well as wings, thus creating a hybrid creature that gets around much like a flying grasshopper.


Story Source:

The above story is based on materials provided by Ecole Polytechnique Federale de Lausanne (EPFL). Note: Materials may be edited for content and length.


Journal Reference:

  1. Mirko Kovač, Jόrg Germann, Christoph Hόrzeler, Roland Y. Siegwart, Dario Floreano. A perching mechanism for micro aerial vehicles. Journal of Micro-Nano Mechatronics, 2010; DOI: 10.1007/s12213-010-0026-1

Cite This Page:

Ecole Polytechnique Federale de Lausanne (EPFL). "Hop, jump and stick; Robots designed with insect instincts." ScienceDaily. ScienceDaily, 28 June 2010. <www.sciencedaily.com/releases/2010/06/100624091751.htm>.
Ecole Polytechnique Federale de Lausanne (EPFL). (2010, June 28). Hop, jump and stick; Robots designed with insect instincts. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2010/06/100624091751.htm
Ecole Polytechnique Federale de Lausanne (EPFL). "Hop, jump and stick; Robots designed with insect instincts." ScienceDaily. www.sciencedaily.com/releases/2010/06/100624091751.htm (accessed April 20, 2014).

Share This



More Computers & Math News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nintendo Changed Gaming World, but Its Future Uncertain: Upstone

Nintendo Changed Gaming World, but Its Future Uncertain: Upstone

AFP (Apr. 19, 2014) — The Nintendo Game Boy celebrates its 25th anniversary Monday and game expert Stephen Upstone says the console can be credited with creating a trend towards handheld gaming devices. Duration: 01:21 Video provided by AFP
Powered by NewsLook.com
Nearly Two Weeks On, The Internet Copes With Heartbleed

Nearly Two Weeks On, The Internet Copes With Heartbleed

Newsy (Apr. 19, 2014) — The Internet is taking important steps in patching the vulnerabilities Heartbleed highlighted, but those preventive measures carry their own costs. Video provided by Newsy
Powered by NewsLook.com
Facebook To Share Nearby Friends Data With Advertisers

Facebook To Share Nearby Friends Data With Advertisers

Newsy (Apr. 19, 2014) — A Facebook spokesperson has confirmed the company will use GPS data from the new Nearby Friends feature for advertising sometime in the future. Video provided by Newsy
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) — Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins