Featured Research

from universities, journals, and other organizations

Muscular problems in children with neonatal diabetes are neurological, study finds

Date:
July 4, 2010
Source:
Wellcome Trust
Summary:
The muscle weakness and coordination problems sometimes seen in patients with neonatal diabetes -- a rare, inherited form of diabetes -- are caused by problems in the brain rather than the muscles, according to new research. The findings could pave the way for the development of improved treatments for the disease.

The K-ATP channel.
Credit: Professor Frances Ashcroft

The muscle weakness and coordination problems sometimes seen in patients with neonatal diabetes -- a rare, inherited form of diabetes -- are caused by problems in the brain rather than the muscles, according to new research. The findings could pave the way for the development of improved treatments for the disease.

Neonatal diabetes affects one in 100,000 infants in the UK. It usually begins in the first six months of a child's life and can be accompanied by development defects affecting speech, movement, and cognitive function.

In 2004, Professor Frances Ashcroft at the University of Oxford and Professor Andrew Hattersley at the Peninsula Medical School discovered that the condition was caused by a genetic defect which produces an overactive version of a protein, which acts as a potassium channel known as the KATP channel. This channel controls the release of insulin from the beta cells of the pancreas and when the channel becomes overactive, it prevents the release of insulin. Lack of insulin, which controls the blood sugar level, results in diabetes.

As a result of this work, patients with neonatal diabetes were not only able to be diagnosed more accurately, but it was also possible to switch them from insulin injections to sulfonylurea tablets. Sulfonylurea drugs, which had already been in use for type 2 diabetes for over fifty years, shut the open KATP channels, thus stimulating insulin release.

"As well as having problems secreting insulin, around one in five children with neonatal diabetes tend to develop more slowly than most and have problems walking and talking," explains Professor Ashcroft. "Sulfonylurea revolutionised treatment for these children, allowing them to take a pill to control their diabetes rather than daily insulin injections. In many cases, the drugs also improve their neurological problems and a few children started to walk or talk shortly after switching medication."

However, sulfonylurea drugs did not always restore muscle function to normal and in some patients they were ineffective.

To investigate the cause of the muscle problems, Professor Ashcroft and her colleagues at the University of Oxford developed two mouse models in which the genetic defect found in the patients was inserted into either the muscle cells or the nerve cells, respectively. The research, funded by the Wellcome Trust and the Royal Society, is published July 1 in the journal Science.

When the KATP channel was overactive in the muscles, the mice had no problems with moving. However, when the channel malfunctioned in the central nervous system -- the brain and the nerves -- the mice had impaired muscle strength, disturbed balance and movement, and showed hyperactivity.

"Our results suggest that the problems that children with neonatal diabetes have with muscle weakness and coordination occurs in their nerve cells, but not in their muscle cells," says first author of the study Rebecca Clark, a Wellcome Trust PhD student. "This has implications for how we might improve treatments for this condition."

"For sulfonylureas to be able to shut down the defective potassium channels in the brain, they must first cross the blood-brain barrier," explains Professor Ashcroft. "This means we need to use drugs that are able to enter the brain effectively."

Professor Ashcroft and colleagues say that the findings should help them focus in on which areas of the brain are affected by the defective KATP channel, and that they can now use their mouse model to look at how the patients' genetic defect affects cognitive function.


Story Source:

The above story is based on materials provided by Wellcome Trust. Note: Materials may be edited for content and length.


Journal Reference:

  1. Rebecca H. Clark, James S. McTaggart, Richard Webster, Roope Mannikko, Michaela Iberl, Xiuli Sim, Patrik Rorsman, Maike Glitsch, David Beeson, and Frances M. Ashcroft. Muscle Dysfunction Caused by a KATP Channel Mutation in Neonatal Diabetes Is Neuronal in Origin. Science, July 1 2010 DOI: 10.1126/science.1186146

Cite This Page:

Wellcome Trust. "Muscular problems in children with neonatal diabetes are neurological, study finds." ScienceDaily. ScienceDaily, 4 July 2010. <www.sciencedaily.com/releases/2010/07/100701145525.htm>.
Wellcome Trust. (2010, July 4). Muscular problems in children with neonatal diabetes are neurological, study finds. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2010/07/100701145525.htm
Wellcome Trust. "Muscular problems in children with neonatal diabetes are neurological, study finds." ScienceDaily. www.sciencedaily.com/releases/2010/07/100701145525.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins