Featured Research

from universities, journals, and other organizations

Engineers prove space pioneer's 25-year-old theory

Date:
July 28, 2010
Source:
University of Strathclyde
Summary:
When American space pioneer, Dr. Robert L. Forward, proposed in 1984 a way of greatly improving satellite telecommunications using a new family of orbits, some claimed it was impossible. But now engineers in Scotland have proved that Forward was right.

This is a schematic of displaced geostationary orbit.
Credit: Advanced Space Concepts Laboratory, University of Strathclyde

When American space pioneer, Dr Robert L Forward, proposed in 1984 a way of greatly improving satellite telecommunications using a new family of orbits, some claimed it was impossible.

Related Articles


But now engineers at the University of Strathclyde's Advanced Space Concepts Laboratory have proved that Forward was right.

The late Dr Forward -- a renowned physicist who worked in the United States and from his second home in Scotland -- believed it was possible to use 'displaced orbits' to deploy more satellites to the north or south of the Earth's equator, helping to meet the growing demand for communications.

He proposed that the orbit of a geostationary satellite could be pushed above -- or below -- the usual geostationary ring around the Earth, which follows the line of the equator, by using a large solar sail propelled by the pressure of sunlight. However, critics later claimed that such 'displaced orbits' were impossible due to the unusual dynamics of the problem.

Now graduate student Shahid Baig and Professor Colin McInnes, Director of the Advanced Space Concepts Laboratory, have shown that Forward was in fact correct, in a new paper published in the Journal of Guidance, Control and Dynamics.

Professor McInnes said:"Satellites generally follow Keplerian Orbits, named after Johannes Kepler -- the scientist who helped us understand orbital motion 400 years ago. Once it's launched, an unpowered satellite will 'glide' along a natural Keplerian orbit.

"However, we have devised families of closed, non-Keplerian orbits, which do not obey the usual laws of orbital motion. Families of these orbits circle the Earth every 24 hours, but are displaced north or south of the Earth's equator. The pressure from sunlight reflecting off a solar sail can push the satellite above or below geostationary orbit, while also displacing the centre of the orbit behind the Earth slightly, away from the Sun."

Although the displacement distance above or below the equator is small -- of the order of 10 to 50 km -- work on hybrid solar sails, which use both light pressure and thrust from a conventional electric propulsion system, is underway and aims to improve the displacement distance.

Professor McInnes added: "Other work is investigating 'polar stationary orbits', termed 'pole-sitters' by Forward, which use continuous low thrust to allow a spacecraft to remain on the Earth's polar axis, high above the Arctic or Antarctic. These orbits could be used to provide new vantage points to view the Earth's polar regions for climate monitoring."

Shahid Baig and Professor Colin McInnes' work has been funded by the National Centre for Physics, Quaid-i-Azam University, and VISIONSPACE, an Advanced Investigator grant from the European Research Council, respectively.

The Advanced Space Concepts Laboratory is a world leader in frontier research on visionary space systems. Opened in 2009, the Laboratory's researchers are investigating how new space technologies can be used to deliver radically new space services, such as increased telecommunications capacity and new orbits for Earth observation and space science missions. More information at: www.strath.ac.uk/space


Story Source:

The above story is based on materials provided by University of Strathclyde. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shahid Baig, Colin R. McInnes. Light-Levitated Geostationary Cylindrical Orbits Are Feasible. Journal of Guidance, Control, and Dynamics, 2010; 33 (3): 782 DOI: 10.2514/1.46681

Cite This Page:

University of Strathclyde. "Engineers prove space pioneer's 25-year-old theory." ScienceDaily. ScienceDaily, 28 July 2010. <www.sciencedaily.com/releases/2010/07/100726094749.htm>.
University of Strathclyde. (2010, July 28). Engineers prove space pioneer's 25-year-old theory. ScienceDaily. Retrieved February 1, 2015 from www.sciencedaily.com/releases/2010/07/100726094749.htm
University of Strathclyde. "Engineers prove space pioneer's 25-year-old theory." ScienceDaily. www.sciencedaily.com/releases/2010/07/100726094749.htm (accessed February 1, 2015).

Share This


More From ScienceDaily



More Space & Time News

Sunday, February 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Video Shows Stars If They Were as Close to Earth as Sun

Video Shows Stars If They Were as Close to Earth as Sun

Buzz60 (Jan. 30, 2015) Russia&apos;s space agency created a video that shows what our sky would look like with different star if they were as close as our sun. Patrick Jones (@Patrick_E_Jones) walks us through the cool video. Video provided by Buzz60
Powered by NewsLook.com
Dog-Loving Astronaut Wins Best Photo of 2015

Dog-Loving Astronaut Wins Best Photo of 2015

Buzz60 (Jan. 30, 2015) Retired astronaut and television host, Leland Melvin, snuck his dogs into the NASA studio so they could be in his official photo. As Mara Montalbano (@maramontalbano) shows us, the secret is out. Video provided by Buzz60
Powered by NewsLook.com
NASA Holds Memorial to Remember Astronauts

NASA Holds Memorial to Remember Astronauts

AP (Jan. 29, 2015) NASA is remembering 17 astronauts who were killed in the line of duty and dozens more who have died since the agency&apos;s beginning. A remembrance ceremony was held Thursday at NASA&apos;s Marshall Space Flight Center in Alabama. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Asteroid's Moon Spotted During Earth Flyby

Asteroid's Moon Spotted During Earth Flyby

Rumble (Jan. 27, 2015) Scientists working with NASA&apos;s Deep Space Network antenna at Goldstone, California discovered an unexpected moon while observing asteroid 2004 BL86 during its recent flyby past Earth. Credit to &apos;NASA JPL&apos;. Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins