Featured Research

from universities, journals, and other organizations

Universal law for material evolution found

Date:
August 3, 2010
Source:
Northwestern University
Summary:
Scientists found that when a material composed of more than one phase is heated, it breaks into smaller pieces and the shape of the interfaces during break-up is universal.

It's a problem that materials scientists have considered for years: how does a material composed of more than one phase evolve when heated to a temperature that will allow atoms to move? In many cases, a rod-like phase embedded in another will break up into smaller domains very much like the droplets at the end of a stream of water, resulting in dramatic changes in the properties of the material.

Now, researchers at the McCormick School of Engineering and Applied Science at Northwestern University, together with collaborators from the Risψ National Laboratory for Sustainable Energy in Denmark and the Swiss Light Source at the Paul Scherrer Institut in Switzerland have answered an important question about this break-up process: How does it happen, and how long does it take?

Researchers found the answer is universal among materials -- a rare case in the materials world -- and their results are published online August 1 in the journal Nature Physics.

Peter Voorhees, Frank C. Engelhart Professor of Materials Science and Engineering at Northwestern, Erik Lauridsen from Risψ, and two graduate students spent five, 24-hour days at the Swiss Light Source (SLS) at the Paul Scherrer Institut, using 4-D synchrotron-based X-ray tomographic microscopy (a relatively new approach that allows for very fast measurements of a material in three-dimensions and in time) to observe the evolution of the rod-shaped phases (a phase is a region of a material that has a unique composition or atomic structure) during the break-up process. They measured the details of what happened -- the shape of the interfaces of the rods as they broke up -- and five days later, they over two terabytes of information to analyze. (In between shifts at the SLS, the team had to make trips to the local electronics store to buy more storage space for their data.)

They found that the shape of the interfaces during break-up becomes universal, no matter what material is used. This sort of universality allows them to predict the dynamics of the break-up process in a vast array of materials, like steel and even noncrystalline materials like polymers.

Voorhees then brought the experimental data to Michael Miksis, professor of engineering sciences and applied mathematics, and the two of them and a graduate student described the process theoretically. They developed equations to calculate the time required for the pinching process to happen, and they found that the kinetics of the process is fixed early on and is the same, no matter the material.

"If it's a rod that's pinching off by diffusion in the material this is it," Voorhees said.

The process has an impact on a wide range of materials, including steel and polymers. For example, many metal parts are made by casting, when a liquid metal is poured into a mold and solidifies into the shape of the part. As the liquid solidifies it forms tree-like structures called dendrites, and if one of the arms of the dendrites break off, it can lead to a change in the properties of the solidified material. The airplane industry, for instance, spent a long time developing solidification methods to avoid this problem when casting jet turbine blades. Another example is polymer solar cells, which use a complicated mixture of two types of polymers. When heated up, the mixture evolves by a process that involves pinching, which ultimately alters the properties of the mixture and the efficiency of the solar cell.

The experiments took place two and a half years ago, and Voorhees and his colleagues are still analyzing the results.

"I think it was really exciting to have a broad range of expertise on this project," he said. "There's no doubt we couldn't have accomplished what we did without an interdisciplinary group like this. It is incredibly exciting that the results are so broad-reaching and applicable to many materials."


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Aagesen et al. Universality and self-similarity in pinch-off of rods by bulk diffusion. Nature Physics, 2010; DOI: 10.1038/nphys1737

Cite This Page:

Northwestern University. "Universal law for material evolution found." ScienceDaily. ScienceDaily, 3 August 2010. <www.sciencedaily.com/releases/2010/08/100802131126.htm>.
Northwestern University. (2010, August 3). Universal law for material evolution found. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/08/100802131126.htm
Northwestern University. "Universal law for material evolution found." ScienceDaily. www.sciencedaily.com/releases/2010/08/100802131126.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) — The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) — The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) — President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) — Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins