Featured Research

from universities, journals, and other organizations

Outsmarting killer bacteria

Date:
September 15, 2010
Source:
American Friends of Tel Aviv University
Summary:
Scientists are developing a generation of antibiotics that takes the mechanism of bacterial resistance and integrates it into drugs, short-circuiting the superbugs' resistance and rendering them susceptible to treatment.

Antibiotics can work miracles, knocking out common infections like bronchitis and tonsillitis. But according to the Center for Disease Control, each year 90,000 people in the U.S. die of drug-resistant "superbugs" -- bacteria like Staphylococcus aureus (MRSA), a deadly form of staph infection resistant to normal antibiotics. Although hospital patients are particularly susceptible as a result of open wounds and weakened immune systems, the bacteria can infect anyone.

Dr. Micha Fridman of Tel Aviv University's Department of Chemistry is now developing the next generation of antibiotics designed to overcome this kind of bacteria. And the key, he says, is in the bacteria itself.

"We took the mechanism of bacterial resistance and used this mechanism itself to generate antibiotics," explains Dr. Fridman. "It's thanks to these bacteria that we can develop a better medication." Conducted in collaboration with Prof. Sylvie Garneau-Tsodikova from the University of Michigan at Ann Arbor, Dr. Fridman's research was highlighted recently in the journal ChemBioChem.

Fighting from within

According to Dr. Fridman, certain bacterial strains include enzymes which help the bacteria to inactivate antibiotics. When the enzymes meet with these antibiotics, they chemically alter the drug, making the antibiotic ineffective and unable to recognize its target.

Turning this powerful mechanism against the bacteria itself, the team isolated the antibiotic-inactivating enzymes from the bacteria, then integrated them into the drugs. With this alteration, the modified antibiotics proved to be effective against typically resistant bacterial strains.

At the heart of this development, says Dr. Fridman, was the chemical modification of the parent drug. Once the researchers identified how the bacteria incapacitated the antibiotics, they were able to create a drug that could block bacterial resistance while maintaining the integrity of the antibiotic.

Killing bacteria, saving lives

These new antibiotics will be a vast improvement on today's drugs, says Dr. Fridman. When fully developed, they could be used to treat infections that are now considered difficult if not impossible to treat with current antibiotics.

Dr. Fridman says that, while the new antibiotics are a few years away from the marketplace, the ability to beat bacterial resistance will be invaluable for the future of health care.


Story Source:

The above story is based on materials provided by American Friends of Tel Aviv University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Keith D. Green, Wenjing Chen, Jacob L. Houghton, Micha Fridman, Sylvie Garneau-Tsodikova. Exploring the Substrate Promiscuity of Drug-Modifying Enzymes for the Chemoenzymatic Generation of N-Acylated Aminoglycosides. ChemBioChem, 2009; 11 (1): 119 DOI: 10.1002/cbic.200900584

Cite This Page:

American Friends of Tel Aviv University. "Outsmarting killer bacteria." ScienceDaily. ScienceDaily, 15 September 2010. <www.sciencedaily.com/releases/2010/09/100914131004.htm>.
American Friends of Tel Aviv University. (2010, September 15). Outsmarting killer bacteria. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2010/09/100914131004.htm
American Friends of Tel Aviv University. "Outsmarting killer bacteria." ScienceDaily. www.sciencedaily.com/releases/2010/09/100914131004.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) — New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) — According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) — Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins