Featured Research

from universities, journals, and other organizations

A technique that shows colorful connections in the brain

Date:
October 31, 2010
Source:
Optical Society of America
Summary:
The connections between neurons in a young, growing brain are more dynamic and changeable than previously thought, according to research based on a new technique that reveals the brain circuitry of a living mouse.

The connections between neurons in a young, growing brain are more dynamic and changeable than previously thought, according to research based on a new technique that reveals the brain circuitry of a living mouse.

A neuron looks a bit like a tree: its branches are dendrites, which accept input and its roots are the axon, which send output. Where axons and dendrites of different neurons come together, they can make connections -- or synapses -- that relay signals and form circuits in the brain.

To study these connections, scientists have traditionally grown networks of neurons in petri dishes -- but there, networks are limited in their ability to mimic brain cells in a living, developing creature. Daniel Kerschensteiner, of Washington University School of Medicine in St. Louis, is one of the first to study connections in the nervous system of living mice, by inserting genes into neurons that cause them to produce fluorescent molecules.

"The novel thing is that we can label specific pairs of pre- and post-synaptic cells and their connections in an intact circuit," said Kerschensteiner. "No one has really done that before."

When energized by the imaging technique called two-photon microscopy, the molecules fluoresce in different colors and reveal the structure and connectivity of brain circuits.

This approach has already yielded some surprising insights. For instance, studies of the neurons in the mouse retina have shown that neural connections can change dramatically fairly late in an animal's development -- in its second week of life, long after the arrangement of axons and dendrites has already been laid down.

In ongoing experiments, Kerschensteiner hopes to further refine science's understanding of how a developing brain reorganizes its connections as it grows -- as well as the internal mechanisms behind this rearrangement and how much it is influenced by an animal's experiences and external environment.

The presentation, "Imaging the Development of Neural Circuits in the Mammalian Retina," takes place on Oct. 25 at the Frontiers in Optics (FiO) 2010/Laser Science XXVI -- the 94th annual meeting of the Optical Society (OSA), which is being held together with the annual meeting of the American Physical Society (APS) Division of Laser Science at the Rochester Riverside Convention Center in Rochester, N.Y., from Oct. 24-28.


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Cite This Page:

Optical Society of America. "A technique that shows colorful connections in the brain." ScienceDaily. ScienceDaily, 31 October 2010. <www.sciencedaily.com/releases/2010/10/101020193036.htm>.
Optical Society of America. (2010, October 31). A technique that shows colorful connections in the brain. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/10/101020193036.htm
Optical Society of America. "A technique that shows colorful connections in the brain." ScienceDaily. www.sciencedaily.com/releases/2010/10/101020193036.htm (accessed July 25, 2014).

Share This




More Mind & Brain News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com
China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins