Featured Research

from universities, journals, and other organizations

Certain cancer therapies' success depends on presence of immune cell, mouse study shows

Date:
October 29, 2010
Source:
Stanford University Medical Center
Summary:
The immune system may play a critical role in ensuring the success of certain types of cancer therapies, according to a new study by researchers at the Stanford University School of Medicine. The research showed treatments that disable cancer-promoting genes called oncogenes are much more successful in eradicating tumors in the presence of a signaling molecule secreted by kind of immune cell called a T helper cell.

The immune system may play a critical role in ensuring the success of certain types of cancer therapies, according to a new study by researchers at the Stanford University School of Medicine. The research showed treatments that disable cancer-promoting genes called oncogenes are much more successful in eradicating tumors in the presence of a signaling molecule secreted by kind of immune cell called a T helper cell.

The finding is important because many drugs now in use in humans are often tested in lab animals with weakened immune systems and many human cancer therapies actually compromise a patient's immune system.

"We may be biasing ourselves by expecting these drugs to work on their own, without factoring in the effect of the immune system," said Dean Felsher, MD, PhD, associate professor of medicine and of pathology and the leader of the Stanford Molecular Therapeutics Program. "We're looking for efficacy while ignoring a whole part of biology. What we're choosing as the best candidates may not in fact be the best drugs for patients."

Felsher, who is also a member of the Stanford Cancer Center, is the senior author of the research, which will be published online Oct. 28 in Cancer Cell.

Oncogenes are genes that, when mutated, contribute to the development of many cancers including leukemias and lymphomas. Although cancers are by nature quite complex, some types of tumors rely so completely on the activity of the mutated genes that researchers have coined the term "oncogene addiction." Blocking the effect of these oncogenes -- the focus of several current cancer therapies -- can cause the tumors to shrink. For instance, the drug imatinib, marketed as Gleevec, targets a key oncogene in chronic myelogenous leukemia and gastrointestinal stromal tumors.

"Researchers and clinicians know that blocking the activity of oncogenes can confer dramatic clinical benefit," said Felsher. "But until recently all of us had assumed that most of the effects we saw on the tumor were relatively independent of the microenvironment of the host."

In contrast, Felsher and his colleagues found that disabling an oncogene called Myc in mice with Myc-dependent leukemias caused complete regression of tumors only in mice with intact immune systems. Tumors in mice with completely or partially compromised immune systems shrank more slowly and were left with a thousand-fold more residual disease. These tumors were also significantly more likely to recur during the 80 days after treatment was stopped.

When the researchers investigated more closely, they found that it was the absence of a type of T cell called CD4 helper cells that was responsible for the differences in recurrence rates (28.5 percent of animals lacking CD4-positive cells had tumor recurrence vs. none in animals missing another type of T cell called a CD8-positive cell). After the researchers added CD4-positive cells to immunocompromised animals, the mice regained the ability to eliminate the tumor and none experienced tumor recurrence during the follow-up period.

Examining the tumor cells after Myc inactivation indicated that the differences in tumor regression and recurrence were not due to an inability of the immune-compromised animals to trigger tumor cell death (known as apoptosis) or to stop the cells from dividing. Rather, the cancer cells in the immunocompromised animals were less likely to slide into a state of inactivity called senescence and, unlike in the wild-type mice, continued to recruit new blood vessels to the tumor site (a process called angiogenesis).

"This was already provocative," said Felsher. "When the immune system was impaired, the treatment didn't work as well. But we then went a step further. We wanted to know specifically what it was about the CD4-positive cells that influenced tumor regression and recurrence."

They began by looking at signaling molecules secreted by immune cells. These molecules, called cytokines, relay instructions to other cells in the area to coordinate the body's response to infection or disease. Felsher and his colleagues found that the expression levels of many cytokines varied between the wild-type mice and those with compromised immune systems. One in particular, a molecule called thrombospondin-1, was especially interesting. It is produced by CD4-positive T cells, and it regulates angiogenesis.

"We knew that if we replaced CD4-positive cells in immune-compromised mice, we repaired their ability to reject the tumors when Myc was inactivated," said Felsher. "When we tried the same experiment with CD4 cells that couldn't express thrombospondin, the mice couldn't reject the tumor."

Therefore, the presence of thrombospondin is important to the process of tumor rejection caused by oncogene inactivation. Felsher and his colleagues saw a similar effect in a mouse model of another type of leukemia that is dependent on the expression of different oncogenes, suggesting that their findings may translate to other instances of oncogene addiction. They also showed that wild-type mice treated with an immune suppressor called cyclosporine A (commonly used in human organ transplant recipients to prevent rejection) had a similar effect on angiogenesis and the ability of the tumor cells to enter senescence.

"The problem is, many treatments for patients with lymphoma and leukemia attack both the cancer cells and the immune system," said Felsher. "So we really have to think about this. We can't assume that therapies that target oncogenes act independently of the rest of the body. They may depend on an intact immune system."

Although many patients believe that their immune systems are inherent cancer fighters, it's not always the case, said Felsher. Rather, most cancers occur and progress in the presence of the immune system, each shaping the other. Under some conditions the immune system can actually facilitate cancer progression, while in others it helps to dismantle established tumors.

"Think of the immune system as a contractor," said Felsher. "They come in and do what they're paid to do. In the presence of thrombospondin, and when oncogenes are inactivated, the immune system can help destroy the cancer. In other situations it facilitates the cancer's growth. So we have to think about this very carefully."

In addition to Felsher, other Stanford researchers involved in the study include graduate student Kavya Rakhra; former medical students Pavan Bachireddy, MD, and Andrew Kopelman, MD; postdoctoral scholar Tahera Zabuawala, PhD; former postdoctoral scholar Robert Zeiser, MD; research associate Liwen Xu, PhD; oncology instructor Alice Fan, MD; and research assistant Qiwei Yang.

The research was funded by the Burroughs Wellcome Fund, the Damon Runyon Foundation, the National Institutes of Health and the Leukemia and Lymphoma Society.


Story Source:

The above story is based on materials provided by Stanford University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kavya Rakhra, Pavan Bachireddy, Tahera Zabuawala, Robert Zeiser, Liwen Xu, Andrew Kopelman, Alice C. Fan, Qiwei Yang, Lior Braunstein, Erika Crosby, Sandra Ryeom, and Dean W. Felsher. CD4 T Cells Contribute to the Remodeling of the Microenvironment Required for Sustained Tumor Regression upon Oncogene Inactivation. Cancer Cell, 2010; DOI: 10.1016/j.ccr.2010.10.002

Cite This Page:

Stanford University Medical Center. "Certain cancer therapies' success depends on presence of immune cell, mouse study shows." ScienceDaily. ScienceDaily, 29 October 2010. <www.sciencedaily.com/releases/2010/10/101027124730.htm>.
Stanford University Medical Center. (2010, October 29). Certain cancer therapies' success depends on presence of immune cell, mouse study shows. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2010/10/101027124730.htm
Stanford University Medical Center. "Certain cancer therapies' success depends on presence of immune cell, mouse study shows." ScienceDaily. www.sciencedaily.com/releases/2010/10/101027124730.htm (accessed April 19, 2014).

Share This



More Health & Medicine News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins