Featured Research

from universities, journals, and other organizations

Imaging of Alfvén waves and fast ions in a fusion plasma

Date:
December 17, 2010
Source:
American Physical Society
Summary:
Fusion plasmas in the laboratory typically reach 100 million degrees. These high temperatures are required to ignite the hydrogen plasma and maintain the fusion burn by the production of high-energy alpha particles. One challenge for a fusion reactor is how to contain the alpha particles in the vessel long enough for the particles to efficiently heat the hydrogen plasma. One way that these alpha particles can escape the fusion chamber prematurely is by exciting high frequency Alfvén waves and riding these waves to the vessel walls, like a surfer rides a wave to the beach.

Fusion plasmas in the laboratory typically reach 100 million degrees. These high temperatures are required to ignite the hydrogen plasma and maintain the fusion burn by the production of high-energy alpha particles. One challenge for a fusion reactor is how to contain the alpha particles in the vessel long enough for the particles to efficiently heat the hydrogen plasma. One way that these alpha particles can escape the fusion chamber prematurely is by exciting high frequency Alfvén waves and riding these waves to the vessel walls, like a surfer rides a wave to the beach.

While it is easy to sit on the seashore and watch surfers riding waves to the beach, it is far more challenging to see the alpha particles riding Alfvén waves to the walls of a fusion reactor. Recently, researchers have provided the first 2-D visualization of the elegant 3-D spiral pattern of these Alfvén waves together with the observation of the energetic particles that ride these waves to the walls of the reactor. The breakthrough allowing the measurement of these Alfvén waves is the development of a highly sensitive camera designed to measure minute temperature fluctuations inside the plasma that indicate the presence of these Alfvén waves. These results are being presented at the American Physical Society Division of Plasma Physics 52nd annual meeting, November 8-12, in Chicago, Illinois by researchers from DIII-D National Fusion Facility and the ASDEX Upgrade tokamak.

In the experiments on the DIII-D tokamak, beams of high-energy particles are injected into the plasma to simulate the alpha particles expected in a fusion reactor. These particles then excite Alfvén waves similar to what's expected in a reactor and under the right conditions they can ride these waves to the wall. By studying the behavior of the energetic particles and Alfvén waves, we can learn a great deal about what to expect in a fusion reactor.

Unprecedented images of these Alfvén waves have recently been obtained by recording the variation in the plasma temperature using a special camera. These cameras are basically heat detectors, much like IR cameras used to image thermal objects at night. However the camera developed on DIII-D is optimized for resolving tiny variations in the plasma temperature by measuring the "heat" radiated in the form of microwaves, much like the radiation emitted by a microwave oven.

The images show that the fusion plasma has a torus shape and the plasma waves spiral around the torus. Many features of the theoretical prediction of these waves are observed in the images, such as the location of the waves in the plasma, the wavelength of the wave and the twisting spiral pattern of the wave.

In addition to these remarkable images of the Alfvén waves, new measurements have been obtained of the particles that excite these waves and ride the waves to the walls.

Recently, a technique has been developed to directly measure ions that strike the wall after riding the Alfvén waves out of the plasma. A phosphor screen is used that lights up when struck by these escaping particles and a camera is used to image the phosphor. The pattern of the light on the screen provides specific information on the energy and direction of the particles arriving at the wall. Fast images of the phosphor show bunches of beam particles arriving to the wall synchronized with the arrival of the Alfvén waves. This is similar to watching multiple surfers riding a single wave, where these surfers all arrive at the beach together.

Thanks to the focused effort of a large international collaboration, modeling efforts to simulate these recent experiments are now able to reproduce many of the features of both the Alfvén wave structure and the particle losses. These same codes are presently being used to predict the presence of Alfvén eigenmodes in ITER and initial results show that modes similar to those observed in DIII-D and ASDEX-Upgrade will be present. A key challenge for the future is to find ways of suppressing these Alfvén waves in a fusion reactor or at least minimizing their effect on the alpha particles.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society. "Imaging of Alfvén waves and fast ions in a fusion plasma." ScienceDaily. ScienceDaily, 17 December 2010. <www.sciencedaily.com/releases/2010/11/101108071915.htm>.
American Physical Society. (2010, December 17). Imaging of Alfvén waves and fast ions in a fusion plasma. ScienceDaily. Retrieved October 19, 2014 from www.sciencedaily.com/releases/2010/11/101108071915.htm
American Physical Society. "Imaging of Alfvén waves and fast ions in a fusion plasma." ScienceDaily. www.sciencedaily.com/releases/2010/11/101108071915.htm (accessed October 19, 2014).

Share This



More Matter & Energy News

Sunday, October 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

Reuters - Innovations Video Online (Oct. 16, 2014) — Japanese researcher uses an eye-sensor camera to enable a bipedal robot to balance itself, while running on a treadmill. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Lockheed Martin's Fusion Concept Basically An Advertisement

Lockheed Martin's Fusion Concept Basically An Advertisement

Newsy (Oct. 15, 2014) — Lockheed Martin announced plans to develop the first-ever compact nuclear fusion reactor. But some experts said the excitement is a little premature. Video provided by Newsy
Powered by NewsLook.com
First Confirmed Case Of Google Glass Addiction

First Confirmed Case Of Google Glass Addiction

Buzz60 (Oct. 15, 2014) — A Google Glass user was treated for Internet Addiction Disorder caused from overuse of the device. Morgan Manousos (@MorganManousos) has the details on how many hours he spent wearing the glasses, and what his symptoms were. Video provided by Buzz60
Powered by NewsLook.com
Science Proves Why Pizza Is So Delicious

Science Proves Why Pizza Is So Delicious

Buzz60 (Oct. 15, 2014) — The American Chemical Society’s latest video about chemistry in every day life breaks down pizza, and explains exactly why it's so delicious. Gillian Pensavalle (@GillianWithaG) has the video. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins