Featured Research

from universities, journals, and other organizations

Gene linked to ADHD allows memory task to be interrupted by brain regions tied to daydreaming

Date:
November 24, 2010
Source:
Georgetown University Medical Center
Summary:
Neuroscientists say brain scans show that a gene nominally linked to attention deficit hyperactivity disorder leads to increased interference by brain regions associated with mind wandering during mental tasks.

Neuroscientists at Georgetown University Medical Center (GUMC) say brain scans show that a gene nominally linked to attention deficit hyperactivity disorder (ADHD) leads to increased interference by brain regions associated with mind wandering during mental tasks.

Presented at the annual meeting of the Society for Neuroscience, these researchers believe their findings are the first to show, through brain scanning, the differences in brain network relationships between individuals with this particular form of gene and others with a different form.

"Our goal is to narrow down the function of candidate genes associated with ADHD, and in this study, we find this gene is tied to competition between brain networks. This could lead to increased inattention, but it likely has nothing to do with hyperactivity," says the study's lead author, Evan Gordon, a doctoral candidate in the Interdisciplinary Program in Neuroscience at GUMC. "This is just one gene, and it does not cause ADHD but likely contributes to it. The disorder is believed to be due to a myriad of genetic factors."

The gene in question is DAT1; its protein produces the dopamine transporter that helps regulate dopamine transmission between brain cells. The DAT1 gene comes in two alleles, or forms -- DAT1 10 and DAT1 9. People who inherit two 10 alleles (10/10) are said to be at greater risk for developing ADHD than people who inherit 10/9 alleles. Rarely does someone inherit two 9 alleles, according to Gordon; he says, in fact, that the10 allele is slightly more common than the 9 allele.

The biological significance of inheriting a DAT1 10 allele is that the brain produces excess quantities of dopamine transporters, and that results in less dopamine signaling between neurons. Too many dopamine transporters quickly scoop up dopamine released by neurons, leaving fewer available to actually reach other neurons and pass on a signal. If there are fewer transporters, more dopamine stays in the synapse between neurons, triggering a reaction.

That is important, Gordon says, because dopamine is important for "gating" the transfer of information between brain regions -- that is, allowing or preventing new information to come in. "The belief is that dopamine helps teach certain brain regions how and when to gate, and that 10/10 carriers are not gating as quickly or effectively as is possible."

That is exactly what the researchers found when they used functional MRI (fMRI) on a group of 38 participants. Half of the groups were 10/10 carriers and half were 10/9 carriers, and none of the participants were diagnosed with ADHD.

The researchers investigated the activity in two areas of the brain, the default mode network (DMN), which is associated with mind wandering or daydreaming and is active when the mind is at rest, and task-positive networks (TPNs), which are active during problem solving and other cognitive work. In this study, participants were asked to remember letters they saw on a screen inside the fMRI machine, and to recall them, thus activating TPNs.

Scanning demonstrated that in 10/10 carriers, the mind wandering areas tended to communicate with regions performing memory tasks more strongly than in did in 10/9 carriers. "Dopamine in the 10/10 carriers was not doing a good enough job in preventing the mind wandering regions from interfering with memory performance regions, resulting in less efficient cognition," Gordon says.

They also found no differences between genotype when the participants were at rest after their memory tasks.

"That tells us that the DAT1 genotype affects gating only when release of dopamine is high, such as during a memory task, and that less dopamine signaling leads to increased inattention," he says.

"Being a DAT1 10/10 carrier does not mean a person has ADHD; it is not a diagnostic marker," Gordon says. "It has been viewed as a contributing factor, and now we know one reason why."

The study was funded by the National Institute of Mental Health.


Story Source:

The above story is based on materials provided by Georgetown University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Georgetown University Medical Center. "Gene linked to ADHD allows memory task to be interrupted by brain regions tied to daydreaming." ScienceDaily. ScienceDaily, 24 November 2010. <www.sciencedaily.com/releases/2010/11/101116122850.htm>.
Georgetown University Medical Center. (2010, November 24). Gene linked to ADHD allows memory task to be interrupted by brain regions tied to daydreaming. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/11/101116122850.htm
Georgetown University Medical Center. "Gene linked to ADHD allows memory task to be interrupted by brain regions tied to daydreaming." ScienceDaily. www.sciencedaily.com/releases/2010/11/101116122850.htm (accessed July 25, 2014).

Share This




More Mind & Brain News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com
China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins