New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Allele

An allele is a viable DNA (deoxyribonucleic acid) coding that occupies a given locus (position) on a chromosome. Usually alleles are sequences that code for a gene, but sometimes the term is used to refer to a non-gene sequence. An individual's genotype for that gene is the set of alleles it happens to possess. In a diploid organism, one that has two copies of each chromosome, two alleles make up the individual's genotype.

An example is the gene for blossom color in many species of flower — a single gene controls the color of the petals, but there may be several different versions (or alleles) of the gene. One version might result in red petals, while another might result in white petals. The resulting color of an individual flower will depend on which two alleles it possesses for the gene and how the two interact.

An allele is an alternative form of a gene (in diploids, one member of a pair) that is located at a specific position on a specific chromosome.

Diploid organisms, for example, humans, have paired homologous chromosomes in their somatic cells, and these contain two copies of each gene. An organism in which the two copies of the gene are identical — that is, have the same allele — is called homozygous for that gene. An organism which has two different alleles of the gene is called heterozygous. Phenotypes (the expressed characteristics) associated with a certain allele can sometimes be dominant or recessive, but often they are neither. A dominant phenotype will be expressed when at least one allele of its associated type is present, whereas a recessive phenotype will only be expressed when both alleles are of its associated type.

However, there are exceptions to the way heterozygotes express themselves in the phenotype. One exception is incomplete dominance (sometimes called blending inheritance) when alleles blend their traits in the phenotype. An example of this would be seen if, when crossing Antirrhinums — flowers with incompletely dominant "red" and "white" alleles for petal color — the resulting offspring had pink petals. Another exception is co-dominance, where both alleles are active and both traits are expressed at the same time; for example, both red and white petals in the same bloom or red and white flowers on the same plant. Codominance is also apparent in human blood types. A person with one "A" blood type allele and one "B" blood type allele would have a blood type of "AB".

A wild type allele is an allele which is considered to be "normal" for the organism in question, as opposed to a mutant allele which is usually a relatively new modification.

(Note that with the advent of neutral genetic markers, the term 'allele' is now often used to refer to DNA sequence variants in non-functional, or junk DNA. For example, allele frequency tables are often presented for genetic markers, such as the DYS markers.) Also there are many different types of alleles.

Related Stories
 


Plants & Animals News

September 12, 2025

Hidden within Arctic ice, diatoms are proving to be anything but dormant. New Stanford research shows these glass-walled algae glide through frozen channels at record-breaking subzero temperatures, powered by mucus-like ropes and molecular motors. ...
Scientists at Stellenbosch University have uncovered a rare class of plant compounds, flavoalkaloids, in Cannabis leaves for the first time. Using advanced two-dimensional chromatography and mass spectrometry, they identified 79 phenolic compounds ...
Flathead catfish are rapidly reshaping the Susquehanna River’s ecosystem. Once introduced, these voracious predators climbed to the top of the food chain, forcing native fish like channel catfish and bass to shift diets and habitats. Using stable ...
Plants are spreading across the globe faster than ever, largely due to human activity, and new research shows that the very same traits that make plants thrive in their native lands also drive their success abroad. A study of nearly 4,000 European ...
Tiny ocean microbes called Prochlorococcus, once thought to be climate survivors, may struggle as seas warm. These cyanobacteria drive 5% of Earth’s photosynthesis and underpin much of the marine food web. A decade of research shows they thrive ...
Orangutans, humans’ close evolutionary relatives, have developed remarkable strategies to survive in the unpredictable rainforests of Borneo. A Rutgers-led study reveals that these apes balance protein intake and adjust their activity to match ...
Tiny diatoms and their bacterial partners act as nature’s nutrient factories, fueling insects and salmon in California’s Eel River. Their pollution-free process could inspire breakthroughs in sustainable farming and ...
Some animals don’t age at the same pace, and flamingos may hold the key to why. A decades-long study in France reveals that resident flamingos, which stay put, enjoy early-life advantages but pay later with accelerated aging, while migratory ...
Scientists have uncovered a surprising new healing mechanism in injured cells called cathartocytosis, in which cells "vomit" out their internal machinery to revert more quickly to a stem cell-like ...
Yale scientists discovered that cavefish species independently evolved blindness and depigmentation as they adapted to dark cave environments, with some lineages dating back over 11 million years. This new genetic method not only reveals ancient ...
Whale sharks in Indonesia are suffering widespread injuries, with a majority scarred by human activity. Researchers found bagans and boats to be the biggest threats, especially as shark tourism grows. Protecting these gentle giants may be as simple ...
Even sharks’ famous tooth-regrowing ability may not save them from ocean acidification. Researchers found that future acidic waters cause shark teeth to corrode, crack, and weaken, threatening their effectiveness as hunting weapons and ...

Latest Headlines

updated 12:56 pm ET