Featured Research

from universities, journals, and other organizations

Rotating light provides indirect look into the nucleus

Date:
December 1, 2010
Source:
American Institute of Physics
Summary:
Nuclear magnetic resonance is one of the best tools for gaining insight into the structure and dynamics of molecules and how they behave in a variety of chemical environments. Now researchers have described an alternative way to get this information, by using light to observe nuclei indirectly via the orbiting electrons.

Nuclear magnetic resonance (NMR) is one of the best tools for gaining insight into the structure and dynamics of molecules because nuclei in atoms within molecules will behave differently in a variety of chemical environments. Nuclei can be thought of as tiny compasses that align when placed in the field of a strong magnet. Similar to magnetic resonance imaging (MRI), conventional NMR uses short pulses of radio waves to drive nuclei away from equilibrium and a 'signal' emerges as nuclei slowly realign with the field.

Results reported in The Journal of Chemical Physics introduce an alternative path to this information, by using light to observe nuclei indirectly via the orbiting electrons.

"We are not looking at a way to replace the conventional technique but there are a number of applications in which optical detection could provide complementary information," says author Carlos Meriles of the City University of New York.

The new technique is based on Optical Faraday Rotation (OFR), a phenomenon in which the plane of linearly polarized light rotates upon crossing a material immersed in a magnetic field. When nuclei are sufficiently polarized, the extra magnetic field they produce is 'felt' by the electrons in the sample thus leading to Faraday rotation of their own. Because the interaction between electrons and nuclei depends on the local molecular structure, OFR-detected NMR spectroscopy provides complementary information to conventional detection.

Another interesting facet of the technique is that, unlike conventional NMR, the signal response is proportional to the sample length, but not its volume. "Although we have not yet demonstrated it, our calculations show that we could magnify the signal by creating a very long optical path in a short, thin tube," Meriles says. This signal magnification would use mirrors at both ends of a channel in a microfluidics device to reflect laser light repeatedly through the sample, increasing the signal amplitude with each pass.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniela Pagliero, Wei Dong, Dimitris Sakellariou, Carlos A. Meriles. Time-resolved, optically detected NMR of fluids at high magnetic field. The Journal of Chemical Physics, 2010; 133 (15): 154505 DOI: 10.1063/1.3502484

Cite This Page:

American Institute of Physics. "Rotating light provides indirect look into the nucleus." ScienceDaily. ScienceDaily, 1 December 2010. <www.sciencedaily.com/releases/2010/11/101130100359.htm>.
American Institute of Physics. (2010, December 1). Rotating light provides indirect look into the nucleus. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2010/11/101130100359.htm
American Institute of Physics. "Rotating light provides indirect look into the nucleus." ScienceDaily. www.sciencedaily.com/releases/2010/11/101130100359.htm (accessed August 28, 2014).

Share This




More Matter & Energy News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins