Featured Research

from universities, journals, and other organizations

Brain's inherent ability to focus learning discovered

Date:
December 13, 2010
Source:
University of Bristol
Summary:
Medical researchers have found a missing link that explains the interaction between brain state and the neural triggers responsible for learning, potentially opening up new ways of boosting cognitive function in the face of diseases such as Alzheimer's as well as enhancing memory in healthy people.

New research explains the interaction between brain state and the neural triggers responsible for learning, potentially opening up new ways of boosting cognitive function.
Credit: iStockphoto/Issam Khriji

Medical researchers have found a missing link that explains the interaction between brain state and the neural triggers responsible for learning, potentially opening up new ways of boosting cognitive function in the face of diseases such as Alzheimer's as well as enhancing memory in healthy people.

Much is known about the neural processes that occur during learning but until now it has not been clear why it occurs during certain brain states but not others. Now researchers from the University of Bristol have been able to study, in isolation, the specific neurotransmitter which enhances learning and memory.

Acetylcholine is released in the brain during learning and is critical for the acquisition of new memories. Its role is to facilitate the activity of NMDA receptors, proteins that control the strength of connections between nerve cells in the brain.

Currently, the only effective treatment for the symptoms of cognitive impairment seen in diseases such as Alzheimer's is through the use of drugs that boost the amount of acetylcholine release and thereby enhance cognitive function.

Describing their findings in the journal Neuron, researchers from Bristol's School of Physiology and Pharmacology have shown that acetylcholine facilitates NMDA receptors by inhibiting the activity of other proteins called SK channels whose normal role is to restrict the activity of NMDA receptors.

This discovery of a role for SK channels provides new insight into the mechanisms underlying learning and memory. SK channels normally act as a barrier to NMDA receptor function, inhibiting changes in the strength of connections between nerve cells and therefore restricting the brain's ability to encode memories. Findings from this latest research show that the SK channel barrier can be removed by the release of acetylcholine in the brain in order to enhance our ability to learn and remember information.

Lead researcher Dr Jack Mellor, from the University of Bristol's Medical School, said: "These findings are not going to revolutionise the treatment of Alzheimer's disease or other forms of cognitive impairment overnight. However, national and international funding bodies have recently made research into aging and dementia a top priority so we expect many more advances in our understanding of the mechanisms underlying learning and memory in both health and disease."

The team studied the effects of drugs that target acetylcholine receptors and SK channels on the strength of connections between nerve cells in animal brain tissue. They found that changes in connection strength were facilitated by the presence of drugs that activate acetylcholine receptors or block SK channels revealing the link between the two proteins.

Dr Mellor added: "From a therapeutic point of view, this study suggests that certain drugs that act on specific acetylcholine receptors may be highly attractive as potential treatments for cognitive disorders. Currently, the only effective treatments for patients with Alzheimer's disease are drugs that boost the effectiveness of naturally released acetylcholine. We have shown that mimicking the effect of acetylcholine at specific receptors facilitates changes in the strength of connections between nerve cells. This could potentially be beneficial for patients suffering from Alzheimer's disease or schizophrenia."

The research team involved the University of Bristol's MRC Centre for Synaptic Plasticity and the Division of Neuroscience in the School of Physiology & Pharmacology, part of the Bristol Neuroscience network. This work was supported by the Wellcome Trust, MRC, BBSRC and GSK.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. Buchanan KA, Petrovic MM, Chamberlain SEL, Marrion NV & Mellor JR. Facilitation of Long-Term Potentiation by Muscarinic M1 Receptors is mediated by inhibition of SK channels. Neuron, DOI: 10.1016/j.neuron.2010.11.018

Cite This Page:

University of Bristol. "Brain's inherent ability to focus learning discovered." ScienceDaily. ScienceDaily, 13 December 2010. <www.sciencedaily.com/releases/2010/12/101208125615.htm>.
University of Bristol. (2010, December 13). Brain's inherent ability to focus learning discovered. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2010/12/101208125615.htm
University of Bristol. "Brain's inherent ability to focus learning discovered." ScienceDaily. www.sciencedaily.com/releases/2010/12/101208125615.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins