Featured Research

from universities, journals, and other organizations

How Saturn's moon Iapetus got its ridge

Date:
December 13, 2010
Source:
Washington University in St. Louis
Summary:
Two scientists propose an explanation for the bizarre ridge belting Saturn's moon Iapetus at the equator. At one time Iapetus itself may have had a satellite, created by a giant impact with another body. The satellite's orbit, would have decayed because of tidal interactions with Iapetus, and at some point it would have been ripped apart, forming a ring of debris around Iapetus that would eventually slam into the moon near its equator.

A ridge that follows the equator of Saturn's moon Iapetus gives it the appearance of a giant walnut. The ridge, photographed in 2004 by the Cassini spacecraft, is 100 kilometers (62 miles) wide and at times 20 kilometers (12 miles) high. (The peak of Mount Everest, by comparison, is 5.5 miles above sea level.) Scientists are debating how the ridge might have formed.
Credit: NASA/JPL/SSI

For centuries, people wondered how the leopard got its spots. The consensus is pretty solid that evolution played a major role.

But it's only been five years since the arrival of high-resolution Cassini Mission images of Saturn's bizarre moon Iapetus that the international planetary community has pondered the unique walnut shape of the large (735 kilometer radius) body, considered by many to be one of the most astonishing features in the solar system.

And there's no consensus as to how a mysterious large ridge that covers more than 75 percent of the moon's equator was formed. It's been a tough nut to crack.

But now a team including an outer solar system specialist from Washington University in St. Louis has proposed a giant impact explains the ridge, up to 20 kilometers tall and 100 kilometers wide.

William B. McKinnon, PhD, Washington University professor of earth and planetary sciences in Arts & Sciences, and his former doctoral student, Andrew Dombard, PhD, associate professor of earth and environmental sciences at the University of Illinois Chicago (UIC), propose that at one time Iapetus itself had a satellite, or moon, created by a giant impact with another big body. The sub-satellite's orbit, they say, would have decayed because of tidal interactions with Iapetus, and it would have gradually migrated towards Iapetus. At some point, the researchers say, the tidal forces would have torn the sub-satellite apart, forming a ring of debris around Iapetus that would eventually slam into the moon near its equator.

"Imagine all of these particles coming down horizontally across the equatorial surface at about 400 meters per second, the speed of a rifle bullet, one after the other, like frozen baseballs," says McKinnon. "Particles would impact one by one, over and over again on the equatorial line. At first the debris would have made holes to form a groove that eventually filled up."

"When you have a debris ring around a body, the collisional interactions steal energy out of the orbit," explains Dombard. "And the lowest energy state that a body can be in is right over the rotational bulge of a planetary body -- the equator. That's why the rings of Jupiter, Saturn, Uranus and Neptune are over the equator."

"We have a lot of corroborating calculations that demonstrate that this is a plausible idea," says Dombard, "but we don't yet have any rigorous simulations to show the process in action. Hopefully, that's next."

Other planetary scientists believe the ridge was created by endogenic (within the planet) activity such as volcanism or mountain-building forces.

"Some people have proposed that the ridge might have been caused by a string of volcanic eruptions, or maybe it's a set of faults," McKinnon notes. "But to align it all perfectly like that -- there is just no similar example in the solar system to point to such a thing."

"There are three critical observations that any model for the formation of the ridge has to satisfy," says Dombard. "They are: Why the feature is sitting on the equator; why only on the equator, and why only on Iapetus. I think we have something here that explains all those observations."

Dombard will make a presentation on the preliminary findings Wed., Dec. 15, 2010, at the fall meeting of the American Geophysical Union in San Francisco. The team also included Andrew F. Cheng of the Johns Hopkins Applied Physics Laboratory, and Jonathan P. Kay, a graduate student at UIC.

Dombard says that Iapetus's Hill sphere -- the zone close to an astronomical body where the body's gravity dominates satellites -- is far bigger than that of any other major satellite in the outer solar system, accounting for why Iapetus is the only body known to have such a ridge.

"Only Iapetus could have had the orbital space for the sub-satellite to then evolve and come down toward its surface and break up and supply the ridge," he says.

One of the supporting calculations the team performed was an estimation for how long it would take the orbit to decay so that the material would reach the point where the tidal forces would tear it apart into a debris disk.

"We're looking at only 100,000 years for a sub-satellite relatively close (to Iapetus) to a billion years for a body that's at the limit of where you could have a stable satellite in orbit around Iapetus," Dombard says. "These time scales are certainly plausible considering we have several billion years of time to work with. And longevity is important, because if it happens too fast all geological trace will be lost."

McKinnon notes that there are other examples in the solar system of giant impacts creating moons that orbit planets, notably our own Moon and Pluto's moon Charon.

"Our Moon and Pluto's, too, are actually retreating from the Earth and Pluto," he says. "But if we were to bring our Moon inside what is called geosynchronous altitude, that special altitude where TV broadcast satellites (and other objects) are able to hover over one spot on Earth as they orbit, then the Moon would actually spiral in toward Earth. Eventually our Moon would break into a ring of particles as it got very close and was torn apart by tides, and then those particles would enter the atmosphere and bombard the Earth at the equator."


Story Source:

The above story is based on materials provided by Washington University in St. Louis. Note: Materials may be edited for content and length.


Cite This Page:

Washington University in St. Louis. "How Saturn's moon Iapetus got its ridge." ScienceDaily. ScienceDaily, 13 December 2010. <www.sciencedaily.com/releases/2010/12/101213075121.htm>.
Washington University in St. Louis. (2010, December 13). How Saturn's moon Iapetus got its ridge. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2010/12/101213075121.htm
Washington University in St. Louis. "How Saturn's moon Iapetus got its ridge." ScienceDaily. www.sciencedaily.com/releases/2010/12/101213075121.htm (accessed October 21, 2014).

Share This



More Space & Time News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com
Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com
Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Saturn's 'Death Star' Moon Might Have A Hidden Ocean

Newsy (Oct. 17, 2014) The smallest of Saturn's main moons, Mimas, wobbles as it orbits. Research reveals it might be due to a global ocean underneath its icy surface. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins