Featured Research

from universities, journals, and other organizations

Mathematical model for moving bottlenecks in road traffic

Date:
January 19, 2011
Source:
Society for Industrial and Applied Mathematics
Summary:
Vehicular traffic flow has been tackled by mathematicians, engineers and physicists alike. Mathematical approaches to study traffic are usually based on the speed, density and flow of vehicles on roadways. Mathematicians now propose a mathematical model of vehicular traffic based on a moving bottleneck caused by a slow-moving vehicle within the flow of cars.

A traffic jam on the 405 freeway in Los Angeles. Mathematicians have now developed a mathematical model of vehicular traffic based on a moving bottleneck caused by a slow-moving vehicle within the flow of cars.
Credit: iStockphoto/Tim McCaig

Serious traffic gridlocks, like the jam on Beijing's national expressway a few months ago which brought vehicles to a halt for days, are a real-world issue needing attention. Unfortunately, such standstills are not uncommon in Beijing, or in other cities around the world.

Related Articles


Such incidents motivate the analysis of traffic to minimize similar events and provide insight into road design and construction, such as where to install traffic lights and toll booths, how many lanes to build, and where to construct an overpass or a tunnel. The goals of these analyses are to relieve congestion in high traffic areas, reduce the risk of accidents, and manage safety and security of motorists.

Not surprisingly, vehicular traffic flow has been tackled by mathematicians, engineers and physicists alike. Mathematical approaches to study traffic are usually based on the speed, density and flow of vehicles on a given roadway. In a paper published this month in the SIAM Journal on Mathematical Analysis, authors Corrado Lattanzio, Amelio Maurizi and Benedetto Piccoli propose a mathematical model of vehicular traffic based on the study of a moving bottleneck caused by a slow-moving vehicle within the flow of cars. The effect of moving bottlenecks on flow of traffic is an important factor in evaluating travel times and traveling paths for commuters.

Many different mathematical models have been proposed to study traffic, including models that use second-order equations for mass and momentum, multipopulation models that factor in the varying characteristics of different kinds of vehicles, and dynamic models that consider traffic flows.

Most of the models so far proposed, however, solve the problem of a single vehicle independently of the entire traffic flow, and so are not completely coupled. An example is a PDE-ODE model that used a partial differential equation to model the flow of traffic while using an ordinary differential equation to determine the position of a single vehicle. Since both could be solved independently, the system did not take into account the influence of the single car on the entire traffic flow.

The paper by Lattanzio et al provides a fully coupled, multi-scale model in which the microscopic position of a single car is taken together with the macroscopic car density on the road. In this micro-macro model, the dynamics of a moving bottleneck caused by a slow-moving vehicle on a street are used to study the effects of disruptions on the flow of traffic. Mathematically, the problem is solved using the fractional step method. In successive time steps, a PDE is first solved for the density of traffic and then the ODE is solved for the position of the slow-moving vehicle.

By solving the bottleneck problem in a coupled fashion, better transportation designs can be made in anticipation of such inevitable traffic congestion.


Story Source:

The above story is based on materials provided by Society for Industrial and Applied Mathematics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Corrado Lattanzio, Amelio Maurizi, Benedetto Piccoli. Moving Bottlenecks in Car Traffic Flow: A PDE-ODE Coupled Model. SIAM Journal on Mathematical Analysis, 2011; 43 (1): 50 DOI: 10.1137/090767224

Cite This Page:

Society for Industrial and Applied Mathematics. "Mathematical model for moving bottlenecks in road traffic." ScienceDaily. ScienceDaily, 19 January 2011. <www.sciencedaily.com/releases/2011/01/110119120542.htm>.
Society for Industrial and Applied Mathematics. (2011, January 19). Mathematical model for moving bottlenecks in road traffic. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2011/01/110119120542.htm
Society for Industrial and Applied Mathematics. "Mathematical model for moving bottlenecks in road traffic." ScienceDaily. www.sciencedaily.com/releases/2011/01/110119120542.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins