Featured Research

from universities, journals, and other organizations

Physicists challenge classical world with quantum-mechanical implementation of 'shell game'

Date:
January 31, 2011
Source:
University of California - Santa Barbara
Summary:
Inspired by the popular confidence trick known as "shell game," researchers have demonstrated the ability to hide and shuffle "quantum-mechanical peas" -- microwave single photons -- under and between three microwave resonators, or "quantized shells."

The photon shell game architecture: Two superconducting phase qubits (squares in the center of the image) are connected to three microwave resonators (three meander lines).
Credit: Erik Lucero, Matteo Mariantoni, Dario Mariantoni

Inspired by the popular confidence trick known as "shell game," researchers at UC Santa Barbara have demonstrated the ability to hide and shuffle "quantum-mechanical peas" -- microwave single photons -- under and between three microwave resonators, or "quantized shells."

In a paper published in the Jan. 30 issue of the journal Nature Physics, UCSB researchers show the first demonstration of the coherent control of a multi-resonator architecture. This topic has been a holy grail among physicists studying photons at the quantum-mechanical level for more than a decade.

The UCSB researchers are Matteo Mariantoni, postdoctoral fellow in the Department of Physics; Haohua Wang, postdoctoral fellow in physics; John Martinis, professor of physics; and Andrew Cleland, professor of physics.

According to the paper, the "shell man," the researcher, makes use of two superconducting quantum bits (qubits) to move the photons -- particles of light -- between the resonators. The qubits -- the quantum-mechanical equivalent of the classical bits used in a common PC -- are studied at UCSB for the development of a quantum super computer. They constitute one of the key elements for playing the photon shell game.

"This is an important milestone toward the realization of a large-scale quantum register," said Mariantoni. "It opens up an entirely new dimension in the realm of on-chip microwave photonics and quantum-optics in general."

The researchers fabricated a chip where three resonators of a few millimeters in length are coupled to two qubits. "The architecture studied in this work resembles a quantum railroad," said Mariantoni. "Two quantum stations -- two of the three resonators -- are interconnected through the third resonator which acts as a quantum bus. The qubits control the traffic and allow the shuffling of photons among the resonators."

In a related experiment, the researchers played a more complex game that was inspired by an ancient mathematical puzzle developed in an Indian temple called the Towers of Hanoi, according to legend.

The Towers of Hanoi puzzle consists of three posts and a pile of disks of different diameter, which can slide onto any post. The puzzle starts with the disks in a stack in ascending order of size on one post, with the smallest disk at the top. The aim of the puzzle is to move the entire stack to another post, with only one disk being moved at a time, and with no disk being placed on top of a smaller disk.

In the quantum-mechanical version of the Towers of Hanoi, the three posts are represented by the resonators and the disks by quanta of light with different energy. "This game demonstrates that a truly Bosonic excitation can be shuffled among resonators -- an interesting example of the quantum-mechanical nature of light," said Mariantoni.

Mariantoni was supported in this work by an Elings Prize Fellowship in Experimental Science from UCSB's California NanoSystems Institute.


Story Source:

The above story is based on materials provided by University of California - Santa Barbara. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matteo Mariantoni, H. Wang, Radoslaw C. Bialczak, M. Lenander, Erik Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, John M. Martinis, A. N. Cleland. Photon shell game in three-resonator circuit quantum electrodynamics. Nature Physics, 2011; DOI: 10.1038/nphys1885

Cite This Page:

University of California - Santa Barbara. "Physicists challenge classical world with quantum-mechanical implementation of 'shell game'." ScienceDaily. ScienceDaily, 31 January 2011. <www.sciencedaily.com/releases/2011/01/110131153530.htm>.
University of California - Santa Barbara. (2011, January 31). Physicists challenge classical world with quantum-mechanical implementation of 'shell game'. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2011/01/110131153530.htm
University of California - Santa Barbara. "Physicists challenge classical world with quantum-mechanical implementation of 'shell game'." ScienceDaily. www.sciencedaily.com/releases/2011/01/110131153530.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins