Featured Research

from universities, journals, and other organizations

Abnormal control of hand movements may hint at ADHD severity in children

Date:
February 15, 2011
Source:
Kennedy Krieger Institute
Summary:
Measurements of hand movement control may help determine the severity of attention deficit hyperactivity disorder (ADHD) in children, according to two new studies. ADHD is a brain disorder characterized by impulsiveness, hyperactivity, such as not being able to sit still, and inattention or difficulty staying focused.

Two research studies published February 14 in Neurology, the medical journal of the American Academy of Neurology, found markers for measuring the ability of children with Attention Deficit Hyperactivity Disorder (ADHD) to control impulsive movements, which may reveal insights into the neurobiology of ADHD, inform prognosis and guide treatments.

In one of two studies conducted by researchers at the Kennedy Krieger Institute in Baltimore, MD and the Cincinnati Children's Hospital Medical Center, children with ADHD performed a finger-tapping task. Any unintentional "overflow" movements occurring on the opposite hand were noted. Children with ADHD showed more than twice the amount of overflow than typically developing children. This is the first time that scientists have been able to quantify the degree to which ADHD is associated with a failure in motor control.

The single most common child behavioral diagnosis, ADHD is a highly prevalent developmental disorder characterized by inattentiveness, hyperactivity and impulsivity. The approximately 2 million affected children often fall behind their peers in development of motor control, motor overflow (unintentional movement) and balance. The inability to control or inhibit voluntary actions is suspected to contribute to the core diagnostic features of excessive hyperactivity, impulsivity and off-task (distractible) behavior.

"Despite its prevalence, there is a lack of understanding about the neurobiological basis of ADHD," said Dr. Stewart Mostofsky, the study's senior author and Director of the Laboratory for Neurocognitive and Imaging Research at the Kennedy Krieger Institute. "A critical obstacle in ADHD is the lack of quantitative measures of brain function that would provide a basis for more accurate diagnosis and effective treatment."

In the study, researchers looked at 50 right-handed children -- 25 with ADHD and 25 typically developing, ages 8-12 years. Each subject completed five tasks of sequential finger-tapping on each hand. In this exercise, the children tapped each finger to the thumb of the same hand, in sequence. The tapping hand alternated between left-handed finger sequencing and right-handed finger sequencing. Excessive mirror overflow, defined as unintentional and unnecessary movements occurring in the same muscles on the opposite side of the body, were measured using video and a device that recorded finger position. These methods provided precise quantification of the amount of overflow movement, a major advance over prior studies that relied on qualitiative scales. During left-handed finger tapping, children with ADHD showed more than twice as much mirror overflow than typically developing children. The differences were particularly prominent for boys with ADHD who showed nearly four times as much mirror overflow than typically developing boys on one of the two measures used in the study.

"This study used quantitative measures to support past qualitative findings that motor overflow persists to a greater degree in children with ADHD than in typically developing peers," said Dr. Mostofsky. "The findings reveal that even at an unconscious level, these children are struggling with controlling and inhibiting unwanted actions and behavior. Studying motor control weakness gives us a window to understanding the similar challenges that children with ADHD face in controlling more complex behavior, which can lead to improved diagnosis and treatment."

In a second study, the researchers investigated motor control in children with ADHD further by measuring activity within the motor cortex, the part of the brain that controls voluntary movement. Researchers used Transcranial Magnetic Stimulation (TMS) to apply mild magnetic pulses for brief durations to trigger muscle activity in the hand, causing hand twitches. Researchers performed 60 trials, with single or paired pulses to measure the level of muscle activity and monitored the resulting brain activity, called short interval cortical inhibition (SICI). Overall, children with ADHD showed a substantial decrease in SICI, with significantly less inhibition of motor activity during the paired pulse stimulation compared to typically developing children. The degree of inhibition in children with ADHD, measured by SICI, was 40 percent less than typically developing children. Furthermore, within the ADHD group, less motor inhibition (decreased SICI) correlated with more severe symptoms. The measure of SICI not only predicted motor impairment in ADHD children but also robustly predicted their behavioral symptoms as reported by parents. The findings suggest that reduced SICI may be a critical biomarker of ADHD.

"The neurobiological underpinnings of motor delays and behavioral symptoms in ADHD are not well understood," said Dr. Donald Gilbert, study author and Director of the Transcranial Magnetic Stimulation Laboratory at the Cincinnati Children's Hospital Medical Center. "However, our study provides more insight into the physiological measures of this disorder. We found SICI to be an important biomarker for predicting ADHD symptoms and severity, and it is a highly quantifiable and reproducible measure. This offers a foundation for determining which children are at higher risk for severe and ongoing symptoms as they grow older."

These studies were principally supported by grants from the National Institutes of Health.


Story Source:

The above story is based on materials provided by Kennedy Krieger Institute. Note: Materials may be edited for content and length.


Journal References:

  1. D. Gilbert, K. Isaacs, M. Augusta, L. Macneil and S. Mostofsky. A marker of ADHD behavior and motor development in children. Neurology, February 15, 2011 vol. 76 no. 7 615-621 DOI: 10.1212/WNL.0b013e31820c2ebd
  2. L. Macneil, P. Xavier, M. Garvey, D. Gilbert, M. Ranta, M. Denckla, and S. Mostofsky. Quantifying excessive mirror overflow in children with attention-deficit/hyperactivity disorder. Neurology, February 15, 2011 vol. 76 no. 7 DOI: 10.1212/WNL.0b013e31820c3052

Cite This Page:

Kennedy Krieger Institute. "Abnormal control of hand movements may hint at ADHD severity in children." ScienceDaily. ScienceDaily, 15 February 2011. <www.sciencedaily.com/releases/2011/02/110214162941.htm>.
Kennedy Krieger Institute. (2011, February 15). Abnormal control of hand movements may hint at ADHD severity in children. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2011/02/110214162941.htm
Kennedy Krieger Institute. "Abnormal control of hand movements may hint at ADHD severity in children." ScienceDaily. www.sciencedaily.com/releases/2011/02/110214162941.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com
How to Master Motherhood With the Best Work/Life Balance

How to Master Motherhood With the Best Work/Life Balance

TheStreet (Apr. 22, 2014) In the U.S., there are more than 11 million couples trying to conceive at any given time. From helping celebrity moms like Bethanny Frankel to ordinary soon-to-be-moms, TV personality and parenting expert, Rosie Pope, gives you the inside scoop on mastering motherhood. London-born entrepreneur Pope is the creative force behind Rosie Pope Maternity and MomPrep. She explains why being an entrepreneur offers the best life balance for her and tips for all types of moms. Video provided by TheStreet
Powered by NewsLook.com
Catching More Than Fish: Ugandan Town Crippled by AIDS

Catching More Than Fish: Ugandan Town Crippled by AIDS

AFP (Apr. 22, 2014) The village of Kasensero on the shores of Lake Victoria was where HIV-AIDS was first discovered in Uganda. Its transient population of fishermen and sex workers means the nationwide programme to combat the virus has had little impact. Duration: 02:30 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins