Featured Research

from universities, journals, and other organizations

Electromechanical circuit sets record beating microscopic 'drum'

Date:
March 10, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
Physicists have demonstrated an electromechanical circuit in which microwaves communicate with a vibrating mechanical component 1,000 times more vigorously than ever achieved before in similar experiments. The microscopic apparatus is a new tool for processing information and potentially could control the motion of a relatively large object at the smallest possible, or quantum, scale.

Colorized micrograph of NIST's aluminum drum, which is 15 micrometers in diameter and 100 nanometers thick. The drum is used in quantum information experiments and ultraprecise measurements of mechanical motion.
Credit: A. Sanders/NIST

Physicists at the National Institute of Standards and Technology (NIST) have demonstrated an electromechanical circuit in which microwaves communicate with a vibrating mechanical component 1,000 times more vigorously than ever achieved before in similar experiments. The microscopic apparatus is a new tool for processing information and potentially could control the motion of a relatively large object at the smallest possible, or quantum, scale.

Described in the March 10 issue of Nature, the NIST experiments created strong interactions between microwave light oscillating 7.5 billion times per second and a "micro drum" vibrating at radio frequencies 11 million times per second. Compared to previously reported experiments combining microscopic machines and electromagnetic radiation, the rate of energy exchange in the NIST device -- the "coupling" that reflects the strength of the connection -- is much stronger, the mechanical vibrations last longer, and the apparatus is much easier to make.

Similar in appearance to an Irish percussion instrument called a bodhrán, the NIST drum is a round aluminum membrane 100 nanometers thick and 15 micrometers wide, lightweight and flexible enough to vibrate freely yet larger and heavier than the nanowires typically used in similar experiments.

"The drum is so much larger than nanowires physically that you can make this coupling strength go through the roof," says first author John Teufel, a NIST research affiliate who designed the drum. "The drum hits a perfect compromise where it's still microscale but you can couple to it strongly."

The NIST experiments shifted the microwave energy by 56 megahertz (MHz, or million cycles per second) per nanometer of drum motion, 1,000 times more than the previous state of the art.

"We turned up the rate at which these two things talk to each other," Teufel says.

The drum is incorporated into a superconducting cavity cooled to 40 milliKelvin, a temperature at which aluminum allows electric current to flow without resistance -- a quantum property. Scientists apply microwaves to the cavity. Then, by applying a drive tone set at the difference between the frequencies of the microwave radiation particles (photons) and the drum, researchers dramatically increase the overall coupling strength to make the two systems communicate faster than their energy dissipates. The microwaves can be used to measure and control the drum vibrations, and vice versa. The drum motion will persist for hundreds of microseconds, according to the paper, a relatively long time in the fast-paced quantum world.

In engineering terms, the drum acts as a capacitor -- a device that holds electric charge. Its capacitance, or ability to hold charge, depends on the position of the drum about 50 nanometers above an aluminum electrode. When the drum vibrates, the capacitance changes and the mechanical motion modulates the properties of the electrical circuit. The same principle is at work with a microphone and FM radio, but here the natural drum motion, mostly at one frequency, is transmitted to the listener in the lab.

The experiment is a step toward entanglement -- a curious quantum state linking the properties of objects -- between the microwave photons and the drum motion, Teufel says. The apparatus has the high coupling strength and low energy losses needed to generate entanglement, he says. Further experiments will address whether the mechanical drumbeats obey the rules of quantum mechanics, which govern the behavior of light and atoms.

The drum is a key achievement in NIST's effort to develop components for superconducting quantum computers and quantum simulations, while also working toward the widely sought scientific goal of making the most precise measurements possible of mechanical motion.

Quantum computers, if they can be built, could solve certain problems that are intractable today. The microwave and radiofrequency signals in the new electromechanical circuit could be used to represent quantum information. NIST scientists plan to combine the new circuit with superconducting quantum bits to create and manipulate motion of relatively large objects on the smallest (quantum) scales.

The experiment reported in Nature is a prelude to cooling the drum to its "ground state," or lowest-energy state. Starting from the ground state, the drum could be manipulated for the applications mentioned above. In addition, such control would enable tests of the boundary between the everyday classical and quantum worlds. The drum also has possible practical applications such as measuring length and force with sensitivities at levels of attometers (billionths of a billionth of a meter) and attonewtons (billionths of a billionth of a newton), respectively.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. J. D. Teufel, Dale Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, R. W. Simmonds. Circuit cavity electromechanics in the strong-coupling regime. Nature, 2011; 471 (7337): 204 DOI: 10.1038/nature09898

Cite This Page:

National Institute of Standards and Technology (NIST). "Electromechanical circuit sets record beating microscopic 'drum'." ScienceDaily. ScienceDaily, 10 March 2011. <www.sciencedaily.com/releases/2011/03/110309131926.htm>.
National Institute of Standards and Technology (NIST). (2011, March 10). Electromechanical circuit sets record beating microscopic 'drum'. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2011/03/110309131926.htm
National Institute of Standards and Technology (NIST). "Electromechanical circuit sets record beating microscopic 'drum'." ScienceDaily. www.sciencedaily.com/releases/2011/03/110309131926.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) — The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) — The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) — President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) — Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins