Featured Research

from universities, journals, and other organizations

Probing the laws of gravity: A gravity resonance method

April 19, 2011
Vienna University of Technology, TU Vienna
Quantum mechanical methods can now be used to study gravity. Scientists in Austria have developed a new measurement method that allows them to test the fundamental theories of physics.

Neutrons between two plates in the earth's gravitational field can occupy different quantum states. A vibrating plate (below) can excite them from one state into the other - which allows extremely accurate energy measurements.

Quantum mechanical methods can now be used to study gravity. At the Vienna University of Technology (TU Vienna), a new measurement method has been developed, which allows scientists to test the fundamental theories of physics.

The world's most precise measurement methods are based on quantum physics. Atomic clocks or high-resolution magnetic resonance, which is used in medicine, rely on accurate measurements of quantum leaps: A particle excited at exactly the right frequency changes its quantum state -- this is called "resonance spectroscopy." Up until now, this method has only been used employing electromagnetic radiation. Researchers at TU Vienna have now developed a resonance method, which for the first time does not use electromagnetism, but the force of gravity. Gravity creates several possible quantum states for neutrons. The Gravity Resonance Method now allows to induce and accurately measure transitions between these states.

The results of these experiments have now been published in the journal Nature Physics.

At first glance, gravity and quantum physics do not appear to have much in common. We can feel gravity, when huge, heavy objects, such as stars or planets are involved. Quantum particles on the other hand are so light that gravity usually does not play a major role in describing them. The new method now links those two areas -- now, the theory of gravity can be probed at minute distances. This way, scientists hope to gain insight into string theory or the nature of dark matter. So far, gravity research was limited to macroscopic or even astronomical distances.

Extremely Slow Neutrons

It is hard to measure the quantum physical effects of gravity at tiny length scales. "Atoms should better not be used for such experiments, because their behaviour is strongly influenced by short-range electromagnetic forces -- such as the Van-der-Waals-force or the Casimir force," professor Hartmut Abele form the TU Vienna explains. "But with our ultra-cold neturons, which are uncharged and hardly polarizable, we can do high-precision measurements at short distances." Professor Abele carried out the experiments together with his assistants, Tobias Jenke and Dr. Hartmut Lemmel, and with Dr. Peter Geltenbort from the Institute Laue-Langevin in Grenoble.

Quantum Leaps Between Gravity-States

We can lift up a stone to an arbitrary height -- the higher we lift it, the more energy we have to spend. For quantum particles like neutrons, travelling between two horizontal plates, this is differerent: they can only take up discrete portions of gravitational energy. Using the neutron source of the Institute Laue-Langevin in Grenoble, the Vienna scientists managed to precisely define the quantum physical energy state of the neutrons between two plates. One of the plates was then vibrated at a precisely controlled frequency. If this frequency corresponds to the energy difference between two quantum states, the neutron is excited into the higher energy state. Measuring at which frequency this excitation takes places therefore reveals the exact energy difference between the quantum states. Inertial mass and gravitational mass

Massive objects have two fundamental properties: They are inert (large forces are needed to accelerate them), and they are heavy (a strong gravitational force acts on them). Already in the 16. century, it was known that inertia and weight go together, and that this causes all objects to fall to the ground at the same speed. Whether this is only a good approximation, or whether this is also true at the minute length scales of quantum physics can now be investigated with the newly developed experiments.

For decades, physicists have been struggling to unify gravitation and quantum physics, creating a unified theory of everything. Different string theories have been developed, predicting the existence of hidden spatial dimensions, which have not yet been discovered. "Using our neutron method, we will try to test such theories in the laboratory," professor Hartmut Abele announces. Even for cosmology, these experiments may play an important role. Theories about the mysterious "dark matter," which is considered to govern the motion of galaxies, could now be investigated on tiny scales with high-precision measurements. "Our method, which is specially designed for minute length scales, could -- if we are lucky -- help us understand the evolution of the universe itself. In any case, thrilling new insights in gravity research are awaiting us," says professor Abele.

Story Source:

The above story is based on materials provided by Vienna University of Technology, TU Vienna. Note: Materials may be edited for content and length.

Journal References:

  1. Tobias Jenke, Peter Geltenbort, Hartmut Lemmel, Hartmut Abele. Realization of a gravity-resonance-spectroscopy technique. Nature Physics, 2011; DOI: 10.1038/nphys1970
  2. Geoffrey L. Greene. Ultracold neutrons: Quantum bouncing ball resonates. Nature Physics, 2011; DOI: 10.1038/nphys1990

Cite This Page:

Vienna University of Technology, TU Vienna. "Probing the laws of gravity: A gravity resonance method." ScienceDaily. ScienceDaily, 19 April 2011. <www.sciencedaily.com/releases/2011/04/110418083349.htm>.
Vienna University of Technology, TU Vienna. (2011, April 19). Probing the laws of gravity: A gravity resonance method. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2011/04/110418083349.htm
Vienna University of Technology, TU Vienna. "Probing the laws of gravity: A gravity resonance method." ScienceDaily. www.sciencedaily.com/releases/2011/04/110418083349.htm (accessed August 21, 2014).

Share This

More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins