New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Electron configuration

In atomic physics and quantum chemistry, the electron configuration is the arrangement of electrons in an atom, molecule, or other physical structure (e.g., a crystal). Like other elementary particles, the electron is subject to the laws of quantum mechanics, and exhibits both particle-like and wave-like nature. Formally, the quantum state of a particular electron is defined by its wavefunction, a complex-valued function of space and time. According to the Copenhagen interpretation of quantum mechanics, the position of a particular electron is not well defined until an act of measurement causes it to be detected. The probability that the act of measurement will detect the electron at a particular point in space is proportional to the square of the absolute value of the wavefunction at that point.

Electrons are able to move from one energy level to another by emission or absorption of a quantum of energy, in the form of a photon. Because of the Pauli exclusion principle, no more than two electrons may exist in a given atomic orbital; therefore an electron may only leap to another orbital if there is a vacancy there.

Knowledge of the electron configuration of different atoms is useful in understanding the structure of the periodic table of elements. The concept is also useful for describing the chemical bonds that hold atoms together. In bulk materials this same idea helps explain the peculiar properties of lasers and semiconductors.

Related Stories
 


Matter & Energy News

August 13, 2025

Scientists have found that microscopic gold clusters can act like the world’s most accurate quantum systems, while being far easier to scale up. With tunable spin properties and mass production potential, they could transform quantum computing and ...
A team of engineers at RMIT University has developed a groundbreaking 3D-printed titanium alloy that s stronger, more ductile, and nearly 30% cheaper to produce than the traditional standard. By replacing expensive vanadium with more accessible ...
AI is helping scientists crack the code on next-gen batteries that could replace lithium-ion tech. By discovering novel porous materials, researchers may have paved the way for more powerful and sustainable energy storage using abundant elements ...
A Penn State-led research team has unraveled the long-standing mystery of how lightning begins inside thunderclouds. Their findings offer the first quantitative, physics-based explanation for lightning initiation—and a glimpse into the stormy ...
Scientists have cracked open a mysterious layer inside batteries, using cutting-edge 3D atomic force microscopy to capture the dynamic molecular structures at their solid-liquid interfaces. These once-invisible electrical double layers (EDLs) twist, ...
Deep beneath the Swiss-French border, the Large Hadron Collider unleashes staggering amounts of energy and radiation—enough to fry most electronics. Enter a team of Columbia engineers, who built ultra-rugged, radiation-resistant chips that now ...
Researchers are exploring AI-powered digital twins as a game-changing tool to accelerate the clean energy transition. These digital models simulate and optimize real-world energy systems like wind, solar, geothermal, hydro, and biomass. But while ...
Deep in Serbia's Jadar Valley, scientists discovered a mineral with an uncanny resemblance to Superman's Kryptonite both in composition and name. Dubbed jadarite, this dull white crystal lacks the ...
A team at KAUST has revealed that the short lifespan of aqueous batteries is primarily due to "free water" molecules triggering harmful chemical reactions at the anode. By adding affordable sulfate salts like zinc sulfate, they significantly reduced ...
Aalto University physicists in Finland have set a new benchmark in quantum computing by achieving a record-breaking millisecond coherence in a transmon qubit — nearly doubling prior limits. This development not only opens the door to far more ...
Imagine concrete that not only survives wildfires and extreme weather, but heals itself and absorbs carbon from the air. Scientists at USC have created an AI model called Allegro-FM that simulates billions of atoms at once, helping design futuristic ...
Scientists have used DNA's self-assembling properties to engineer intricate moiré superlattices at the nanometer scale—structures that twist and layer like never before. With clever molecular ...

Latest Headlines

updated 12:56 pm ET