Featured Research

from universities, journals, and other organizations

Scientists discover how to predict learning using brain analysis

Date:
April 19, 2011
Source:
University of California - Santa Barbara
Summary:
An international team of scientists has developed a way to predict how much a person can learn. Researchers collected brain imaging data from people performing a motor task, and then analyzed this data using new computational techniques. They found evidence that the flexibility of a person's brain can be used to predict how well someone will learn. The researchers view flexibility as how different areas of the brain link up in different combinations.

These figures correlate fMRI activation with how finger sequences are grouped into integrated clusters. This leads to the the production of fluid low-cost movements.
Credit: UCSB

An international team of scientists has developed a way to predict how much a person can learn, based on studies at UC Santa Barbara's Brain Imaging Center.

A study published in this week's Proceedings of the National Academy of Sciences (PNAS) details the findings.

Researchers collected brain imaging data from people performing a motor task, and then analyzed this data using new computational techniques. They found evidence that the flexibility of a person's brain can be used to predict how well someone will learn. The researchers view flexibility as how different areas of the brain link up in different combinations.

"What we wanted to do was find a way to predict how much someone is going to learn in the future, independent of how they are as a performer," said Scott T. Grafton, senior author and professor of psychology at UCSB. Grafton is also director of the UCSB Brain Imaging Center.

The team ran an experiment over three sessions in which 18 volunteers had to push a series of buttons, similar to a sequence of notes on a piano keyboard, as fast as possible. They then divided functional MRI images of each volunteer's brain into 112 different regions and analyzed how these different areas connected while they performed the task.

"Our study has obvious implications clinically," said Grafton. "If you're a patient in physical therapy, should you just take tomorrow off? Or will it be a good day? We don't know that, but that would be a potential application -- tailoring intervention to capacity to change. In healthy people, this information could accelerate learning -- when you should study, when you should practice, when you should try to acquire a new skill."

The new study uses computational methods developed to analyze what the researchers call multilayer networks, in which each layer might represent a network at one snapshot in time, or a different set of connections between the same set of brain regions. These layers are combined into a larger mathematical object, which can contain a potentially huge amount of data and is difficult to analyze. Previous methods could only deal with each layer separately.

"Parts of the brain communicate with one another very strongly, so they form a sort of module of intercommunicating regions of the brain," said first author Danielle S. Bassett, postdoctoral fellow in physics at UCSB. "In this way, brain activity can segregate into multiple functional modules. What we wanted to measure is how fluid those modules are."

Bassett explained that there are flexible brain regions with allegiances that change through time. "That flexibility seems to be the factor that predicts learning," said Bassett. "So, if you are very flexible, then you will end up learning better on the second day, and if you are not very flexible, then you learn less."

Bassett's education is highly interdisciplinary, with studies in physics, mathematics, psychology, and neuroscience. She received her Ph.D. in physics at the University of Cambridge where she had supervisors in several disciplines, including psychiatry. Her current studies are carried out within UCSB's Department of Physics and Department of Psychology.

Authors of the PNAS study, in addition to Bassett and Grafton, are Nicholas F. Wymbs, UCSB; Mason A. Porter, University of Oxford; Peter J. Mucha, University of North Carolina, and Jean M. Carlson, UCSB.


Story Source:

The above story is based on materials provided by University of California - Santa Barbara. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. S. Bassett, N. F. Wymbs, M. A. Porter, P. J. Mucha, J. M. Carlson, S. T. Grafton. Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1018985108

Cite This Page:

University of California - Santa Barbara. "Scientists discover how to predict learning using brain analysis." ScienceDaily. ScienceDaily, 19 April 2011. <www.sciencedaily.com/releases/2011/04/110419091157.htm>.
University of California - Santa Barbara. (2011, April 19). Scientists discover how to predict learning using brain analysis. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2011/04/110419091157.htm
University of California - Santa Barbara. "Scientists discover how to predict learning using brain analysis." ScienceDaily. www.sciencedaily.com/releases/2011/04/110419091157.htm (accessed October 2, 2014).

Share This



More Mind & Brain News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pregnancy Spacing Could Have Big Impact On Autism Risks

Pregnancy Spacing Could Have Big Impact On Autism Risks

Newsy (Oct. 1, 2014) A new study says children born less than one year and more than five years after a sibling can have an increased risk for autism. Video provided by Newsy
Powered by NewsLook.com
Stopping School Violence

Stopping School Violence

Ivanhoe (Oct. 1, 2014) A trauma doctor steps out of the hospital and into the classroom to teach kids how to calmly solve conflicts, avoiding a trip to the ER. Video provided by Ivanhoe
Powered by NewsLook.com
Pineal Cysts: Debilitating Pain

Pineal Cysts: Debilitating Pain

Ivanhoe (Oct. 1, 2014) A tiny cyst in the brain that can cause debilitating symptoms like chronic headaches and insomnia, and the doctor who performs the delicate surgery to remove them. Video provided by Ivanhoe
Powered by NewsLook.com
Burning Away Brain Tumors

Burning Away Brain Tumors

Ivanhoe (Oct. 1, 2014) Doctors are 'cooking' brain tumors. Hear how this new laser-heat procedure cuts down on recovery time. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins