Featured Research

from universities, journals, and other organizations

Biomedical engineering students fight hypothermia on the battlefield

Date:
May 24, 2011
Source:
Stevens Institute of Technology
Summary:
A team of biomedical engineering students is developing a new device to combat hypothermia among wounded soldiers.

A biomedical engineering senior design team at Stevens Institute of Technology is working with the U.S. Army and New Jersey physicians to develop a new device to combat hypothermia among wounded soldiers.

Team "Heat Wave" is composed of seniors Walter Galvez, Amanda Mendez, Geoffrey Ng, and Dalia Shendi, in addition to Biomedical Engineering graduate student Maia Hadidi. The team's faculty advisor is Dr. Vikki Hazelwood and consulting physician is Dr. Herman Morchel from Hackensack University Medical Center. Additional expert support from industry and military was provided by Jan Skadberg, RN, Colonel Boots Hodges, Stevens Burrows, and Major Jim Fulton.

"Stevens unique Senior Design approach gave students real-world experience developing a practical technology in collaboration with the military," says Dr. Hazelwood. "This is a fantastic project with a life-saving application as well as entrepreneurial potential."

Developing a portable device to re-warm patients suffering from hypothermia has the potential to substantially impact battlefield medicine. Loss of blood after trauma is the number one cause of combat fatalities in the United States armed forces. Hypothermia complications associated with loss of blood are shown to reduce the rate of survival after severe trauma by 22.5%.

"Current methods for fighting hypothermia in combat zones are to use an IV drip and wool blanket," says Geoffrey. "With these means it takes up to 16 hours to increase the core body temperature to a more stable point."

The Heat Wave system uses heated, humidified air delivered through an oxygen mask to capitalize on the patient's respiratory system. Capitalizing on the fact that the entire blood volume passes through the lungs, this heat is rapidly transferred to the blood via convection. Tests of their system show it is more effective than current treatments.

"We can decrease the time needed to resuscitate a hypothermic patient to just four hours, a 75% reduction in treatment time," reports Maia. "Not only does this increase survival rates for the patient, but it also frees up field medics so they can attend to others."

The team developed a prototype to test their concept. A heater/humidifier pumps air into an insulated container simulating the lungs, which is connected to an additional container representing the cardiovascular system. Heat transfers between the containers via a water-filled tube to simulate convection between lungs and blood. Heat and humidity are continually recorded via sensors wired to a laptop computer.

"The hands-on Senior Design process is very helpful," Dalia says. "Before Stevens, I had little real experience, and now I know I can research a problem, look at the market for a product, and build and test a successful prototype."

In addition to presenting their research at Senior Projects Expo April 27, the team is participating in the Student Elevator Pitch competition during Research and Entrepreneurship Day on April 29.

"Now that we have proof of concept, we want to pass this idea to someone who can make it into a portable device viable for field treatment," Amanda says.

"Not only is it a life-saving product, but it also has great market potential," says Geoffrey, who is representing the team for the elevator pitch. "The Heat Wave system does not replace current treatments, but is used in parallel, so it has no direct competition."

The students report tremendous satisfaction knowing that their invention will save lives. Contributions like this are a constant fixture for biomedical engineers, a fact that has helped make careers in Biomedical Engineering one of the top-rated in the United States.

"We all felt that this project offered us a unique opportunity," Walter recalls. "We were able to collaborate with the military to save the lives of our soldiers."


Story Source:

The above story is based on materials provided by Stevens Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Stevens Institute of Technology. "Biomedical engineering students fight hypothermia on the battlefield." ScienceDaily. ScienceDaily, 24 May 2011. <www.sciencedaily.com/releases/2011/05/110523101911.htm>.
Stevens Institute of Technology. (2011, May 24). Biomedical engineering students fight hypothermia on the battlefield. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2011/05/110523101911.htm
Stevens Institute of Technology. "Biomedical engineering students fight hypothermia on the battlefield." ScienceDaily. www.sciencedaily.com/releases/2011/05/110523101911.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins