Featured Research

from universities, journals, and other organizations

Data traveling by light

Date:
August 21, 2011
Source:
Fraunhofer-Gesellschaft
Summary:
Regular LEDs can be turned into optical WLAN with only a few additional components, thanks to visible light communication. The lights are then not just lighting up, they also transfer data. They send films in HD quality to your iPhone or laptop, with no loss in quality, quickly and safely.

Data are traveling by light.
Credit: Image courtesy of Fraunhofer-Gesellschaft

Regular LEDs can be turned into optical WLAN with only a few additional components thanks to visible light communication (in short, VLC). The lights are then not just lighting up, they also transfer data. They send films in HD quality to your iPhone or laptop, with no loss in quality, quickly and safely.

Just imagine the following scenario: four people are comfortably ensconced in a room. Each one of them can watch a film from the Internet on his or her laptop, in HD quality. This is made possible thanks to optical WLAN. Light from the LEDs in the overhead lights serves as the transfer medium. For a long time, this was just a vision for the future. However, since scientists from the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute HHI in Berlin, Germany, have developed a new transfer technology for video data within the scope of the OMEGA project of the EU, its implementation in real life is getting markedly closer.

At the end of May, the scientists were able to present the results of the project in Rennes, France. They were able to transfer data at a rate of 100 megabits per second (Mbit/s) without any losses, using LEDs in the ceiling that light up more than ten square meters (90 square feet). The receiver can be placed anywhere within this radius, which is currently the maximum range. "This means that we transferred four videos in HD quality to four different laptops at the same time," says Dr. Anagnostis Paraskevopoulos from the HHI.

"The fundamentals of visible light communication (VLC) were developed together with the industry partners Siemens and France Telecom Orange Labs," said the expert. At HHI, the team of project manager Klaus-Dieter Langer is now further developing the new technology. "For VLC the sources of light -- in this case, white-light LEDs -- provide lighting for the room at the same time they transfer information. With the aid of a special component, the modulator, we turn the LEDs off and on in very rapid succession and transfer the information as ones and zeros. The modulation of the light is imperceptible to the human eye. A simple photo diode on the laptop acts as a receiver.

As Klaus-Dieter Langer explains, "The diode catches the light, electronics decode the information and translate it into electrical impulses, meaning the language of the computer." One advantage is that it takes only a few components to prepare the LEDs so that they function as transfer media. One disadvantage is that as soon as something gets between the light and the photo diode (for example, when someone holds his hand over the diode) the transfer is impaired. Laptops, Palm devices or mobile telephones are all potential end devices.

The scientists emphasize that VLC is not intended to replace regular WLAN, PowerLAN or UMTS. It is best suited as an additional option for data transfer where radio transmission networks are not desired or not possible -- without needing new cables or equipment in the house. Combinations are also possible, such as optical WLAN in one direction and PowerLAN for the return channel. Films can be transferred to the PC like this and also played there, or they can be sent on to another computer.

The new transmission technology is suitable for hospitals, for example, because radio transmissions are not allowed there. Despite this fact, high data rates must be transmitted without losses and unzipped, according to the experts. If part of the communication occurs via the light in the surgical room, this would make it possible to control wireless surgical robots or transmit x-ray images. In airplanes, each passenger could view his own entertainment program on a display, saving aircraft manufacturers miles of cables. Another possible venue for the application of this technology are production facilities, where radio transmissions very often interfere with the processes.

Currently the scientists are developing their systems toward higher bit rates. "Using red-blue-green-white light LEDs, we were able to transmit 800 Mbit/s in the lab," said Klaus-Dieter Langer. "That is a world record for the VLC method."


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Data traveling by light." ScienceDaily. ScienceDaily, 21 August 2011. <www.sciencedaily.com/releases/2011/08/110802090415.htm>.
Fraunhofer-Gesellschaft. (2011, August 21). Data traveling by light. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/08/110802090415.htm
Fraunhofer-Gesellschaft. "Data traveling by light." ScienceDaily. www.sciencedaily.com/releases/2011/08/110802090415.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins