Featured Research

from universities, journals, and other organizations

Human cells engineered to make functional anal sphincters in lab

Date:
August 10, 2011
Source:
Wake Forest Baptist Medical Center
Summary:
Researchers have built the first functional anal sphincters in the laboratory, suggesting a potential future treatment for both fecal and urinary incontinence.

Researchers have built the first functional anal sphincters in the laboratory, suggesting a potential future treatment for both fecal and urinary incontinence. Made from muscle and nerve cells, the sphincters developed a blood supply and maintained function when implanted in mice. The results are reported in the medical journal Gastroenterology.

"In essence, we have built a replacement sphincter that we hope can one day benefit human patients. This is the first bioengineered sphincter made with both muscle and nerve cells, making it 'pre-wired' for placement in the body," said senior author Khalil N. Bitar, Ph.D., a professor of regenerative medicine at Wake Forest Baptist Medical Center's Institute for Regenerative Medicine. Bitar performed the work when he was on the University of Michigan faculty and it included a colleague from Emory University.

Sphincters are ring-like muscles that maintain constriction of a body passage. There are numerous sphincters in the human body, including those that control the release of urine and feces. There are actually two sphincters at the anus -- one internal and one external. Fecal incontinence is the result of a weakened internal sphincter.

There is a high incidence of weakened internal fecal sphincters in older adults; and women who have had episiotomies during childbirth can also be affected. "Many individuals find themselves withdrawing from their social lives and attempting to hide the problem from their families, friends, and even their doctors," said Bitar. "Many people suffer without help."

Current options for repair of the internal anal sphincter include grafts of skeletal muscle, injectable silicone material or implantation of mechanical devices, all of which have high complication rates and limited success.

To engineer an internal anal sphincter in the laboratory, the researchers used a small biopsy from a human sphincter and isolated smooth muscle cells that were then multiplied in the lab. In a ring-shaped mold, these cells were layered with nerve cells isolated from mice to build the sphincter. The mold was placed in an incubator for nine days, allowing for tissue formation. The entire process took about six weeks.

Numerous laboratory tests of the engineered sphincters, including stimulating the nerve cells, showed normal tissue function, such as the ability to relax and contract. The sphincters were then implanted just under the skin of mice to determine how they would respond in the body. Mice with suppressed immune systems were selected so that there would be no issues with rejection.

After 25 days of implantation, each sphincter was re-tested and also compared with the animals' native sphincters. The engineered sphincters had developed a blood vessel supply and continued to function like native tissue.

"The engineered sphincters were physiologically similar to native tissue," said Bitar. "This takes us one step closer to realizing the goal of using a patient's own cells to engineer a replacement sphincter in the lab."

Bitar's team had previously shown that circular pieces of tissue made from sphincter muscle cells displayed characteristics of native sphincters. However, the tissue lacked the nerve cells required for normal function in the body.

"Our latest advance, a sphincter engineered with muscle and nerve cells, will allow us to 'connect' the engineered tissue with nerve pathways in the intestine," said Bitar.

Bitar's group will continue the research in more advanced research models. The ultimate goal is to harvest both muscle and nerve cells from a patient, build a pre-wired sphincter in the lab, and implant it back in the same patient. Using the patient's own cells would eliminate the risk of rejection.

"While we have numerous challenges to meet, we have crossed a major hurdle," said Bitar. "This proof of concept research suggests that this strategy may be useful for treating a variety of neuromuscular conditions of the intestine. In addition, it could potentially be applied to other diseases of sphincter muscles, including urinary incontinence."

Co-researchers were Robert Gilmont, Ph.D., Sita Somara, Ph.D., and lead author Shreya A. Raghavan, a Ph.D. candidate, all now at Wake Forest Baptist; Daniel Teitelbaum M.D., from the University of Michigan; and Shanthi Srinivasan, M.D., from Emory University.


Story Source:

The above story is based on materials provided by Wake Forest Baptist Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Shreya Raghavan, Robert R. Gilmont, Eiichi A. Miyasaka, Sita Somara, Shanthi Srinivasan, Daniel H. Teitelbaum and Khalil N. Bitar. Successful Implantation of Bioengineered, Intrinsically Innervated, Human Internal Anal Sphincter. Gastroenterology, Volume 141, Issue 1, July 2011, Pages 310-319

Cite This Page:

Wake Forest Baptist Medical Center. "Human cells engineered to make functional anal sphincters in lab." ScienceDaily. ScienceDaily, 10 August 2011. <www.sciencedaily.com/releases/2011/08/110809132220.htm>.
Wake Forest Baptist Medical Center. (2011, August 10). Human cells engineered to make functional anal sphincters in lab. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2011/08/110809132220.htm
Wake Forest Baptist Medical Center. "Human cells engineered to make functional anal sphincters in lab." ScienceDaily. www.sciencedaily.com/releases/2011/08/110809132220.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins