Featured Research

from universities, journals, and other organizations

Embryo development obeys the laws of hydrodynamics

Date:
August 18, 2011
Source:
Springer
Summary:
The law of hydrodynamics can contribute to our understanding of how a cluster of embryonic cells can transform into an animal within the first 36 hours of development, according to new research.

Embryo development obeys the laws of hydrodynamics.
Credit: Image courtesy of Springer

The law of hydrodynamics can contribute to our understanding of how a cluster of embryonic cells can transform into an animal within the first 36 hours of development, according to research recently published in European Physical Journal E.

Related Articles


Vincent Fleury, a researcher at the Paris Diderot University, studied the early stage of development when embryonic cells first form a flat sheet of cells before folding into a U-shape, resembling a folded pancake. He demonstrated that the formation of a chicken's head is a consequence of the collision between both sides of the embryo flowing at constant speed towards each other.

This study captured for the first time on film highly accurate observations of how a chicken embryo evolves during its first two days of development, using time-lapse microscopy. Prior attempts relied on complex imaging techniques that were costly and not as accurate as direct filming. In this study, the embryo was first taken out of its shell, its yolk removed (as it is not needed in the first 48 hours) and it was kept under appropriate temperature conditions.

Previous developmental studies focused on studying each cell individually. In this study, the embryo was considered in its entirety, like a type of plasticine material able to flow like Dali's melting clocks. The study involved measuring the speed of all points of the embryo and its viscoelasticity in vivo. Combining this data with the biological parameters of the embryo (cells' viscosity, thickness and overall size), the author created a model of the growing embryo's movement.

He discovered that the mathematical formula describing magnetic fields could also be used to model fields of vectors representing the hydrodynamic flow of embryonic cells. When the two sides collided, the embryonic cells were subject to forces that can be described as those of two magnets oriented head on, which resulted in the formation of the head.

These findings demonstrate that the head formation does not merely result from a series of discrete events activated by genetic switches. It also shows that chemical gradients are not the prevailing force responsible for movement of cells in early embryo formation, as had been previously thought.

These studies shed new light to on vertebrate development, and could ultimately provide some clues for scientists involved in regenerative medicines.

Similar work on limb development is due to be published in the August issue of the European Physical Journal Applied Physics.


Story Source:

The above story is based on materials provided by Springer. Note: Materials may be edited for content and length.


Journal Reference:

  1. V. Fleury. A change in boundary conditions induces a discontinuity of tissue flow in chicken embryos and the formation of the cephalic fold. The European Physical Journal E, 2011; 34 (7) DOI: 10.1140/epje/i2011-11073-0

Cite This Page:

Springer. "Embryo development obeys the laws of hydrodynamics." ScienceDaily. ScienceDaily, 18 August 2011. <www.sciencedaily.com/releases/2011/08/110818101740.htm>.
Springer. (2011, August 18). Embryo development obeys the laws of hydrodynamics. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2011/08/110818101740.htm
Springer. "Embryo development obeys the laws of hydrodynamics." ScienceDaily. www.sciencedaily.com/releases/2011/08/110818101740.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins