Featured Research

from universities, journals, and other organizations

Iron 'veins' are secret of promising new hydrogen storage material

Date:
September 1, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
Scientists have a new approach to the problem of safely storing hydrogen in future fuel-cell powered cars -- molecular scale 'veins' of iron permeating grains of magnesium like a network of capillaries.

Particles of pure magnesium (left) can only collect a limited amount of hydrogen on their outer surfaces, and the process is slow. But when the magnesium is doped with iron (right), far more hydrogen is delivered through the iron layers, which also results in much faster charging.
Credit: NIST

With a nod to biology, scientists at the National Institute of Standards and Technology (NIST) have a new approach to the problem of safely storing hydrogen in future fuel-cell-powered cars. Their idea: molecular scale "veins" of iron permeating grains of magnesium like a network of capillaries. The iron veins may transform magnesium from a promising candidate for hydrogen storage into a real-world winner.

Hydrogen has been touted as a clean and efficient alternative to gasoline, but it has one big drawback: the lack of a safe, fast way to store it onboard a vehicle. According to NIST materials scientist Leo Bendersky, iron-veined magnesium could overcome this hurdle. The combination of lightweight magnesium laced with iron could rapidly absorb -- and just as importantly, rapidly release -- sufficient quantities of hydrogen so that grains made from the two metals could form the fuel tank for hydrogen-powered vehicles.

"Powder grains made of iron-doped magnesium can get saturated with hydrogen within 60 seconds," says Bendersky, "and they can do so at only 150 degrees Celsius and fairly low pressure, which are key factors for safety in commercial vehicles."

Grains of pure magnesium are reasonably effective at absorbing hydrogen gas, but only at unacceptably high temperatures and pressures can they store enough hydrogen to power a car for a few hundred kilometers -- the minimum distance needed between fill-ups. A practical material would need to hold at least 6 percent of its own weight in hydrogen gas and be able to be charged safely with hydrogen in the same amount of time as required to fill a car with gasoline today.

The NIST team used a new measurement technique they devised that uses infrared light to explore what would happen if the magnesium were evaporated and mixed together with small quantities of other metals to form fine-scale mixtures. The team found that iron formed capillary-like channels within the grains, creating passageways for hydrogen transport within the metal grains that allow hydrogen to be drawn inside extremely fast. According to Bendersky, the magnesium-iron grains could hold up to 7 percent hydrogen by weight.

Bendersky adds that the measurement technique could be valuable more generally, as it can reveal details of how a material absorbs hydrogen more effectively than the more commonly employed technique of X-ray diffraction -- a method that is limited to analyzing a material's averaged properties.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Zhuopeng Tan, Chun Chiu, Edwin J. Heilweil, Leonid A. Bendersky. Thermodynamics, kinetics and microstructural evolution during hydrogenation of iron-doped magnesium thin films. International Journal of Hydrogen Energy, 2011; 36 (16): 9702 DOI: 10.1016/j.ijhydene.2011.04.196

Cite This Page:

National Institute of Standards and Technology (NIST). "Iron 'veins' are secret of promising new hydrogen storage material." ScienceDaily. ScienceDaily, 1 September 2011. <www.sciencedaily.com/releases/2011/08/110831115812.htm>.
National Institute of Standards and Technology (NIST). (2011, September 1). Iron 'veins' are secret of promising new hydrogen storage material. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/08/110831115812.htm
National Institute of Standards and Technology (NIST). "Iron 'veins' are secret of promising new hydrogen storage material." ScienceDaily. www.sciencedaily.com/releases/2011/08/110831115812.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins