Featured Research

from universities, journals, and other organizations

Ferroelectrics could pave way for ultra-low power computing

September 13, 2011
University of California - Berkeley
Engineers have shown that it is possible to reduce the minimum voltage necessary to store charge in a capacitor, an achievement that could reduce the power draw and heat generation of today's electronics. They used ferroelectric materials to amplify the charge accumulated at the capacitor for a given voltage, a phenomenon called negative capacitance.

Shown is a rendition of an experimental stack made with a layer of lead zirconate titanate, a ferroelectric material. UC Berkeley researchers showed that this configuration could amplify the charge in the layer of strontium titanate for a given voltage, a phenomenon known as negative capacitance.
Credit: Asif Khan, UC Berkeley

Engineers at the University of California, Berkeley, have shown that it is possible to reduce the minimum voltage necessary to store charge in a capacitor, an achievement that could reduce the power draw and heat generation of today's electronics.

Related Articles

"Just like a Formula One car, the faster you run your computer, the hotter it gets. So the key to having a fast microprocessor is to make its building block, the transistor, more energy efficient," said Asif Khan, UC Berkeley graduate student in electrical engineering and computer sciences. "Unfortunately, a transistor's power supply voltage, analogous to a car's fuel, has been stuck at 1 volt for about 10 years due to the fundamental physics of its operation. Transistors have not become as 'fuel-efficient' as they need to be to keep up with the market's thirst for more computing speed, resulting in a cumulative and unsustainable increase in the power draw of microprocessors. We think we can change that."

Khan, working in the lab of Sayeef Salahuddin, UC Berkeley assistant professor of electrical engineering and computer sciences, has been leading a project since 2008 to improve the efficiency of transistors.

The researchers took advantage of the exotic characteristics of ferroelectrics, a class of material that holds both positive and negative electrical charges. Ferroelectrics hold electrical charge even when you don't apply a voltage to it. What's more, the electrical polarization in ferroelectrics can be reversed with the application of an external electrical field.

Getting more bang for the buck

The engineers demonstrated for the first time that in a capacitor made with a ferroelectric material paired with a dielectric -- an electrical insulator -- the charge accumulated for a given voltage can, in effect, be amplified, a phenomenon called negative capacitance.

The team report their results in the Sept. 12 issue of the journal Applied Physics Letters. The experiment sets the stage for a major upgrade to transistors, the on-off switch that generate the zeros and ones of a computer's binary language.

"This work is the proof-of-principle we have needed to pursue negative capacitance as a viable strategy to overcome the power draw of today's transistors," said Salahuddin, who first theorized the existence of negative capacitance in ferroelectric materials as a graduate student with engineering professor Supriyo Datta at Purdue University. "If we can use this to create low-power transistors without compromising performance and the speed at which they work, it could change the whole computing industry."

The researchers paired a ferroelectric material, lead zirconate titanate (PZT), with an insulating dielectric, strontium titanate (STO), to create a bilayer stack. They applied voltage to this PZT-STO structure, as well as to a layer of STO alone, and compared the amount of charge stored in both devices.

"There was an expected voltage drop to obtain a specific charge with the dielectric material," said Salahuddin. "But with the ferroelectric structure, we demonstrated a two-fold voltage enhancement in the charge for the same voltage, and that increase could potentially go significantly higher."

Computer clock speed hits a bottleneck

Since the first commercial microprocessors came onto the scene in the early 1970s, the number of transistors squeezed onto a computer chip has doubled every two years, a progression predicted by Intel co-founder Gordon Moore and popularly known as Moore's Law. Integrated circuits that once held thousands of transistors decades ago now boast billions of the components.

But the reduced size has not led to a proportional decrease in the overall power required to operate a computer chip. At room temperature, a minimum of 60 millivolts is required to increase by tenfold the amount of electrical current flowing through a transistor. Since the difference between a transistor's on and off states must be significant, it can take at least 1 volt to operate a transistor, the researchers said.

"We've hit a bottleneck," said Khan. "The clock speed of microprocessors has plateaued since 2005, and shrinking transistors further has become difficult."

The researchers noted that it becomes increasingly difficult to dissipate heat efficiently from smaller spaces, so reducing transistor size much more would come at the risk of frying the circuit board.

The solution proposed by Salahuddin and his team is to modify current transistors so that they incorporate ferroelectric materials in their design, a change that could potentially generate a larger charge from a smaller voltage. This would allow engineers to make a transistor that dissipates less heat, and the shrinking of this key computer component could continue.

Notably, the material system the UC Berkeley researchers reported shows this effect at above 200 degrees Celsius, much hotter than the 85 degrees Celsius (185 degrees Fahrenheit) at which a current day microprocessor works.

The researchers are now exploring new ferroelectric materials for room temperature negative capacitance in addition to incorporating the materials into a new transistor.

Until then, Salahuddin noted that there are other potential applications for ferroelectrics in electronics. "This is a good system for dynamic random access memories, energy storage devices, super-capacitors that charge electric cars, and power capacitors for use in radio frequency communications," he said.

This research was supported by the Semiconductor Research Corporation's Focus Center Research Program and the Office of Naval Research.

Story Source:

The above story is based on materials provided by University of California - Berkeley. The original article was written by Sarah Yang, Media Relations. Note: Materials may be edited for content and length.

Journal Reference:

  1. Asif Islam Khan, Debanjan Bhowmik, Pu Yu, Sung Joo Kim, Xiaoqing Pan, Ramamoorthy Ramesh, Sayeef Salahuddin. Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Applied Physics Letters, 2011; 99: 113501 DOI: 10.1063/1.3634072

Cite This Page:

University of California - Berkeley. "Ferroelectrics could pave way for ultra-low power computing." ScienceDaily. ScienceDaily, 13 September 2011. <www.sciencedaily.com/releases/2011/09/110912102105.htm>.
University of California - Berkeley. (2011, September 13). Ferroelectrics could pave way for ultra-low power computing. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2011/09/110912102105.htm
University of California - Berkeley. "Ferroelectrics could pave way for ultra-low power computing." ScienceDaily. www.sciencedaily.com/releases/2011/09/110912102105.htm (accessed November 23, 2014).

Share This

More From ScienceDaily

More Matter & Energy News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins