Featured Research

from universities, journals, and other organizations

Unexpected role of noise in spine formation

Date:
September 28, 2011
Source:
Institute of Physical Chemistry of the Polish Academy of Sciences
Summary:
The development of periodic structures in embryos giving rise to the formation of, e.g., spine segments, is controlled not by genes but by simple physical and chemical phenomena. Researchers have now proposed a straightforward theoretical model to describe the process, and studied how the segmentation is affected by internal, thermodynamic noise of the system. The results turned out to be counterintuitive.

The development of periodic structures in embryos giving rise to the formation of, e.g., spine segments, is controlled not by genes but by simple physical and chemical phenomena. Researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences, the Centre National de la Recherche Scientifique and the University Pierre et Marie Curie have proposed a straightforward theoretical model to describe the process, and studied how the segmentation is affected by internal, thermodynamic noise of the system. The results turned out to be counterintuitive.

In an early stage of embryogenesis in vertebrates, periodic segments called somites are formed in their dorsal mesoderm. With time, they transform into, i.a., vertebrae, spine elements. A Polish-French team from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw and the Centre National de la Recherche Scientifique (CNRS) and the University Pierre et Marie Curie (UPMC) in Paris has presented a straightforward theoretical model describing the formation of similar patterns. An analysis of the model properties has revealed that the formation of such patterns is surprisingly affected by the internal noise that is present in any physical system.

"We are convinced that the laws of physics and chemistry can explain biological phenomena and the evolution of living organisms," says Dr Bogdan Nowakowski from IPC PAS. "That's why we attempted to model theoretically one of the elements of vertebrate embryogenesis: the formation of periodic structures in somitogenesis. We did it by considering the minimal scheme of chemical reactions involving only a few components."

The chemistry of far-from-equilibrium phenomena knows spectacular Belousov-Zhabotinsky oscillating reactions (you can watch them in many movies on Youtube). The reactions occur in aqueous solutions of appropriate reagents with various concentrations. If addition of a component results in deviation of the system from the state of thermodynamic equilibrium, then chemical wavefronts start to propagate in the liquid. Their existence results in periodic colour changes of the solution. If the reaction takes place in a thin solution layer, e.g., in a Petri dish, one can observe permanently forming and propagating colour rings.

The model proposed by the scientists from the IPC PAS, CNRS and UPMC is exceptionally straightforward. It involves three chemical reactions and four substances including two ones forcing a non-equilibrium state in the system under study. The parameters of the model are adjusted so as to induce reactions leading to clear spatial oscillations of concentrations of the solution components. The result are periodic patterns, stable in time, so called Turing structures.

In nature, periodic structures in embryos are probably formed in a more complicated way, involving perhaps several dozens of reactions or even more. "Our model is a purely theoretical concept, a signal indicating that a part of the phenomena occurring during somitogenesis are controlled by truly simple mechanisms," stresses Nowakowski.

Having in hand a theoretical model describing the dynamics of a phenomenon observed in embryogenesis, the Polish-French team was able to verify the effect of internal noise on the described process. In nature, the noise is a consequence of the discrete, molecular structure of matter, an unavoidable, stochastic effect occurring in every physical system. In a theoretical model, noise can be introduced or suppressed at will. This also means that the theoreticians can do what the experimentalists cannot: to compare a naturally non-existing noiseless system with a noisy system -- and to assess the effect of thermodynamic fluctuations on the segmentation process.

"Usually, one assumes that an accidental noise disturbs the existing order. Our simulations gave an opposite result. After the noise has been introduced into the model, periodic patterns started to appear significantly faster, just after the chemical wavefront has passed," describes Nowakowski. The thermodynamic fluctuations turned out to accelerate the formation of the periodic spatial pattern and to stabilize it in time. Moreover, the system formed easier the patterns, in a clearly broader range of parameter values.

The research has been carried out under the Polish-French Polonium Program, and the results are published in the Europhysics Letters journal.


Story Source:

The above story is based on materials provided by Institute of Physical Chemistry of the Polish Academy of Sciences. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Lemarchand, B. Nowakowski. Do the internal fluctuations blur or enhance axial segmentation? EPL (Europhysics Letters), 2011; 94 (4): 48004 DOI: 10.1209/0295-5075/94/48004

Cite This Page:

Institute of Physical Chemistry of the Polish Academy of Sciences. "Unexpected role of noise in spine formation." ScienceDaily. ScienceDaily, 28 September 2011. <www.sciencedaily.com/releases/2011/09/110928185640.htm>.
Institute of Physical Chemistry of the Polish Academy of Sciences. (2011, September 28). Unexpected role of noise in spine formation. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2011/09/110928185640.htm
Institute of Physical Chemistry of the Polish Academy of Sciences. "Unexpected role of noise in spine formation." ScienceDaily. www.sciencedaily.com/releases/2011/09/110928185640.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Ebola Cases Could Reach 1.4 Million Within 4 Months

Ebola Cases Could Reach 1.4 Million Within 4 Months

Newsy (Sep. 23, 2014) Health officials warn that without further intervention, the number of Ebola cases in Liberia and Sierra Leone could reach 1.4 million by January. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins