Featured Research

from universities, journals, and other organizations

New strategy to accelerate blood vessel maturation has therapeutic potentials for ischemic diseases

Date:
November 13, 2011
Source:
VIB
Summary:
Researchers have described a new mechanism to enhance the restoration of the blood flow in ischemic diseases, which are among the leading causes of death worldwide. The scientists demonstrate that blocking the protein PhD2 in white blood cells accelerates the maturation of blood vessels.

VIB-K.U.Leuven researchers describe a new mechanism to enhance the restoration of the blood flow in ischemic diseases, which are among the leading causes of death worldwide. The team of Massimiliano Mazzone demonstrates that blocking the protein PhD2 in white blood cells accelerates the maturation of blood vessels. This leads to a better blood perfusion to organs that had been deprived from blood -- and thus oxygen -- supply by ischemia. This might become a new therapeutic approach in ischemic diseases to prevent damage to the organs.

"Ischemic diseases can lead to serious damage to organs, for instance through a heart attack or stroke. It gives a good feeling to find possible new therapeutic strategies to restrict the following damage to a minimum," says Massimiliano Mazzone (VIB/K.U.Leuven).

Bypassing the occlusion

Mazzone has demonstrated that arteriogenesis (growth of pre-existing connections between distinct blood vessels into functional arteries) can be accelerated by blocking the function of the protein PhD2 in a particular class of white blood cells. This resulted in wider and functional vessels, which allows the blood to bypass the occlusion and thus offers better blood perfusion. The scientists want to investigate in further detail the therapeutic potential of blocking PhD2 for ischemic diseases.

Blood as supplier of vital substances

Every organ in our body needs enough oxygen and other vital substances in order to function properly. Our blood takes care of the transport throughout our body to the different organs. It also removes toxic products. A lower -- or no -- blood perfusion to a certain organ, e.g. through an occlusion of a blood vessel, endangers this organ and can cause irreversible damage after a while. This is what happens in ischemic diseases, which can lead to heart attacks and strokes. The challenge is to restore the blood flow as soon as possible to avoid damage of the organs.

Natural processes to prevent ischemic tissue damage include arteriogenesis. This is essential to obtain blood vessels that are wide and 'mature' enough for a good blood stream. Enhancing this process receives a lot of attention as a therapeutic approach to avoid tissue damage by ischemia.


Story Source:

The above story is based on materials provided by VIB. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yukiji Takeda, Sandra Costa, Estelle Delamarre, Carmen Roncal, Rodrigo Leite de Oliveira, Mario Leonardo Squadrito, Veronica Finisguerra, Sofie Deschoemaeker, Franηoise Bruyθre, Mathias Wenes, Alexander Hamm, Jens Serneels, Julie Magat, Tapan Bhattacharyya, Andrey Anisimov, Benedicte F. Jordan, Kari Alitalo, Patrick Maxwell, Bernard Gallez, Zhen W. Zhuang, Yoshihiko Saito, Michael Simons, Michele De Palma, Massimiliano Mazzone. Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature, 2011; DOI: 10.1038/nature10507

Cite This Page:

VIB. "New strategy to accelerate blood vessel maturation has therapeutic potentials for ischemic diseases." ScienceDaily. ScienceDaily, 13 November 2011. <www.sciencedaily.com/releases/2011/10/111010092856.htm>.
VIB. (2011, November 13). New strategy to accelerate blood vessel maturation has therapeutic potentials for ischemic diseases. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2011/10/111010092856.htm
VIB. "New strategy to accelerate blood vessel maturation has therapeutic potentials for ischemic diseases." ScienceDaily. www.sciencedaily.com/releases/2011/10/111010092856.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) — Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) — More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) — Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) — Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins