Featured Research

from universities, journals, and other organizations

Researchers decode a puzzling movement disorder

Date:
November 25, 2011
Source:
Universität Bonn
Summary:
Neurodegenerative diseases represent one of the greatest challenges of our aging society. However, investigation into these diseases is made particularly difficult due to the limited availability of human brain tissue. Scientists have now taken a roundabout path: They reprogrammed skin cells from patients with a hereditary movement disorder into so-called induced pluripotent stem cells (iPS cells) and obtained functional nerve cells from them. They subsequently decoded how the disease arises.

Neurodegenerative diseases represent one of the greatest challenges of our aging society. However, investigation into these diseases is made particularly difficult due to the limited availability of human brain tissue. Scientists from the Life & Brain Research Center and Neurology Clinic of Bonn University have now taken a roundabout path: They reprogrammed skin cells from patients with a hereditary movement disorder into so-called induced pluripotent stem cells (iPS cells) and obtained functional nerve cells from them. They subsequently decoded how the disease arises.

Their results have now been published in the specialist periodical Nature.

The so-called Machado-Joseph disease is at the center of the current Bonn study. This is a disorder of movement coordination which was originally described in inhabitants of the Azores of Portuguese descent and which represents the most frequent dominantly inherited cerebellar ataxia in Germany today. The majority of patients develop gait abnormalities and a series of other neurological symptoms between the ages of 20 and 40. The cause of the disease is a recurring genetic sequence in the ataxin-3 gene which leads to agglutination of the corresponding protein and as a result, the nerve cells in the brain become damaged eventually. Until now, it was not clear why the disease only affects nerve cells and how the abnormal protein agglutination is triggered.

"Jack-of-all-trades" from skin specimens of patients

In order to study the disease process on a molecular level, scientists working with the stem cell researcher Prof. Dr. Oliver Brüstle at the Institute for Reconstructive Neurobiology at Bonn University initially produced so-called induced pluripotent stem cells (iPS cells) from small skin specimens from patients. These induced pluripotent stem cells are cells which are returned to a very early, undifferentiated stage. These „jacks-of-all-trades" -- once obtained -- can be multiplied to a nearly unlimited degree and they mature in all cells of the body. In the next step, the team working with Prof. Brüstle converted the iPS cells into brain stem cells from which the scientists were able to develop as many nerve cells needed for their investigations.

In particular: Since the nerve cells come from the patients themselves, they have the same genetic changes and can therefore serve as a cellular model of the disease. "This method allows us to research the disease in the cells that are actually affected and which we otherwise could not access -- almost as if we had placed the patient's brain into the cell culture dish," says Dr. Philipp Koch, a long-time colleague of Prof. Brüstle and one of the lead authors of the study. Together with his colleague Dr. Peter Breuer from the Neurology Clinic and Polyclinic of the Bonn University Medical Center, Koch electrically stimulated the artificially created nerve cells. In doing so, the researchers were able to show that the formation of the protein aggregates is directly correlated with the electrical activity of the nerve cells. "The enzyme calpain plays a key role in this; calpain is activated by the increased calcium content of stimulated nerve cells," says the biochemist Breuer. "This newly identified mechanism explains why the disease only affects nerve cells," Prof. Brüstle points out.

Reprogrammed nerve cells as a study objective for drugs

"The study illustrates the potential that this special type of stem cells has for neurological disease research," says Prof. Dr. Thomas Klockgether, Clinical Director of the German Center for Neurodegenerative Diseases (DZNE) and Director of the Bonn University Clinic for Neurology, whose team closely collaborated in this study with the scientists working with Prof. Brüstle. For Prof. Brüstle, this is reason enough to contemplate new configurations: "We need interdisciplinary departments in which scientists from stem cell biology and molecular disease research work together side by side." Prof. Dr. Dr. Pierluigi Nicotera, scientific chairman and chief executive of the DZNE, concurs: "The DZNE is very interested in cooperative arrangements. Because reprogrammed stem cells have enormous potential for understanding the pathology of neurodegenerative diseases."

As a next step, Prof. Brüstle and his colleagues from Life & Brain want to use reprogrammed nerve cells for the development of active substances to treat neurological diseases.


Story Source:

The above story is based on materials provided by Universität Bonn. Note: Materials may be edited for content and length.


Journal Reference:

  1. Philipp Koch, Peter Breuer, Michael Peitz, Johannes Jungverdorben, Jaideep Kesavan, Daniel Poppe, Jonas Doerr, Julia Ladewig, Jerome Mertens, Thomas Tüting, Per Hoffmann, Thomas Klockgether, Bernd O. Evert, Ullrich Wüllner, Oliver Brüstle. Excitation-induced ataxin-3 aggregation in neurons from patients with Machado–Joseph disease. Nature, 2011; DOI: 10.1038/nature10671

Cite This Page:

Universität Bonn. "Researchers decode a puzzling movement disorder." ScienceDaily. ScienceDaily, 25 November 2011. <www.sciencedaily.com/releases/2011/11/111124150749.htm>.
Universität Bonn. (2011, November 25). Researchers decode a puzzling movement disorder. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2011/11/111124150749.htm
Universität Bonn. "Researchers decode a puzzling movement disorder." ScienceDaily. www.sciencedaily.com/releases/2011/11/111124150749.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins