Featured Research

from universities, journals, and other organizations

Getting cancer cells to swallow poison

Date:
January 10, 2012
Source:
Brigham and Women's Hospital
Summary:
Researchers created a drug delivery system that is able to effectively deliver a tremendous amount of chemotherapeutic drugs to prostate cancer cells.

Ligand-nanoparticle components (in green) targeting and binding to cells.
Credit: Image courtesy of Brigham and Women's Hospital

Honing chemotherapy delivery to cancer cells is a challenge for many researchers. Getting the cancer cells to take the chemotherapy "bait" is a greater challenge. But perhaps such a challenge has not been met with greater success than by the nanotechnology research team of Omid Farokhzad, MD, Brigham and Women's Hospital (BWH) Department of Anesthesiology Perioperative and Pain Medicine and Research.

Related Articles


In their latest study with researchers from Massachusetts Institute of Technology (MIT) and Massachusetts General Hospital, the BWH team created a drug delivery system that is able to effectively deliver a tremendous amount of chemotherapeutic drugs to prostate cancer cells.

The study is electronically published in the January 3, 2012 issue of ACS Nano.

The process involved is akin to building and equipping a car with the finest features, adding a passenger (in this case the cancer drug), and sending it off to its destination (in this case the cancer cell).

To design the "vehicle," researchers used a selection strategy developed by Farokhzad's team that allowed them to essentially select for ligands (molecules that bind to the cell surface) that could specifically target prostate cancer cells. The researchers then attached nanoparticles containing chemotherapy, in this case docetaxel, to these hand-picked ligands.

To understand Farokhzad's selection strategy, one must understand ligand behavior. While most ligands mainly have the ability to bind to cells, the strategy of Farokhzad and his colleagues allowed them to select specific ligands that were not only able to bind to prostate cancer cells, but also possessed two other important features: 1) they were smart enough to distinguish between cancer and non-cancer cells and 2) they were designed to be swallowed by cancer cells.

"Most ligands are engulfed by cells, but not efficiently," said Farokhzad. "We designed one that is intended to be engulfed."

Moreover, the ability for a ligand to intentionally be engulfed by a cell is crucial in drug delivery since it enables a significant amount of drug to enter the cancer cell, as opposed to remaining outside on the cell surface. This is a more effective method for cancer therapy.

Another important aspect of this drug delivery design is that these ligand-nanoparticle components are able to interact with multiple cancer markers (antigens) on the cell surface. Unlike other drug delivery systems, this makes it versatile and potentially more broadly applicable.

According to the study's lead author, ZeyuXiao, PhD, a researcher in the BWH Laboratory of Nanomedicine and Biomaterials, current strategies for targeting nanoparticles for cancer therapy rely on combining nanoparticles with ligands that can target well-known cancer markers. Such strategies can be difficult to execute since most cancer cells do not have identifiable cell surface markers to distinguish themselves from normal cells.

"In this study, we developed a unique strategy that enables the nanoparticles to specifically target and efficiently be engulfed into any desired types and sub-types of cancer cells, even if their cancer markers are unknown," said Xiao. "Our strategy simplifies the development process of targeted nanoparticles and broadens their applications in cancer therapy."

This research was supported by the National Institutes of Health, the David Koch-Prostate Cancer Foundation, and the USA Department of Defense Prostate Cancer Research Program.


Story Source:

The above story is based on materials provided by Brigham and Women's Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zeyu Xiao, Etgar Levy-Nissenbaum, Frank Alexis, Andrej Lupták, Benjamin A. Teply, Juliana M. Chan, Jinjun Shi, Elise Digga, Judy Cheng, Robert Langer, Omid C. Farokhzad. Engineering of Targeted Nanoparticles for Cancer Therapy Using Internalizing Aptamers Isolated by Cell-Uptake Selection. ACS Nano, 2012; 120103130305002 DOI: 10.1021/nn204165v

Cite This Page:

Brigham and Women's Hospital. "Getting cancer cells to swallow poison." ScienceDaily. ScienceDaily, 10 January 2012. <www.sciencedaily.com/releases/2012/01/120109155946.htm>.
Brigham and Women's Hospital. (2012, January 10). Getting cancer cells to swallow poison. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2012/01/120109155946.htm
Brigham and Women's Hospital. "Getting cancer cells to swallow poison." ScienceDaily. www.sciencedaily.com/releases/2012/01/120109155946.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) — It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) — More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) — The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins