Featured Research

from universities, journals, and other organizations

Conquering LED efficiency droop

Date:
April 30, 2012
Source:
Optical Society of America
Summary:
Like a coffee enthusiast who struggles to get a buzz from that third cup of morning joe, light-emitting diodes (LEDs) seem to reach a point where more electricity no longer imparts the same kick and productivity levels-off. Now a team of researchers has devised a new design for green and blue LEDs that avoids much of this vexing efficiency droop.

This is a schematic of the transparent LED packaging design (left) and a working blue LED using the design (right).
Credit: Yuji Zhao, University of California Santa Barbara

Like a coffee enthusiast who struggles to get a buzz from that third cup of morning joe, light-emitting diodes (LEDs) seem to reach a point where more electricity no longer imparts the same kick and productivity levels-off. Now a team of researchers from California and Japan has devised a new design for green and blue LEDs that avoids much of this vexing efficiency droop. The findings will be presented at the Conference on Lasers and Electro-Optics (CLEO: 2012), taking place May 6-11 in San Jose, Calif.

Related Articles


By changing the orientation of the crystal structure in semiconductor films, the team created LEDs with high efficiency and extremely low droop. Droop, which is a dramatic drop in efficiency at high currents, is one of the main problems limiting the growth of the solid-state lighting market.

Blue and green LEDs provide the essential hues that blend with other wavelengths to give us the familiar white light we expect from household bulbs. These highly prized colors, however, have been among the hardest to engineer and the "droopiest" of the LEDs.

"We believe this technology could be a big breakthrough and has the potential to change the future of lighting," says Yuji Zhao, a graduate student at the Solid State Lighting and Energy Center at the University of California Santa Barbara (UCSB) and one of the lead researchers on the team.

LEDs are many times more energy efficient than heat-spewing incandescent bulbs, but, due to droop, lose a significant fraction of that efficiency at the high current levels required for typical household lighting. No one is exactly sure what causes droop, although different research groups have offered several competing explanations. Despite the uncertainty, the UC Santa Barbara-based research team has developed a promising technique to minimize droop by making changes to the way the LEDs are manufactured.

LED chips are made from layers of doped semiconductors sandwiched together. When a voltage is applied across the layers, electrons and holes (an absence of electrons) migrate toward an area of the LED called the active layer, where they combine, begetting a photon in the process. In most commercially available blue LEDs, the crystals that make up the semiconductor layers are grown in a flat orientation called the c-plane. This traditional orientation of the crystals, however, may create electrical fields that interfere with the reunion of the electrons and holes.

The UCSB researchers' LEDs have non-traditional, tilted crystal orientations that lessen the effect of the field, and exhibit some of the lowest reported measures of droop. Using this approach the team was also able to fabricate LED chips that are smaller than standard commercial LEDs, which could cut down on manufacturing costs.

Further work remains to be done. "The biggest problem right now is the relatively high cost of the gallium nitride [GaN] bulk substrates," says Zhao, referring to the thin sheets of crystalline material on which the group's LEDs are grown. "At UCSB we are also developing methods to mass produce high quality GaN bulk substrates. I have confidence in this and I think it's just a matter of time before [the cost of GaN] will no longer be an obstacle."


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Cite This Page:

Optical Society of America. "Conquering LED efficiency droop." ScienceDaily. ScienceDaily, 30 April 2012. <www.sciencedaily.com/releases/2012/04/120430105450.htm>.
Optical Society of America. (2012, April 30). Conquering LED efficiency droop. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2012/04/120430105450.htm
Optical Society of America. "Conquering LED efficiency droop." ScienceDaily. www.sciencedaily.com/releases/2012/04/120430105450.htm (accessed October 30, 2014).

Share This



More Matter & Energy News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Lowe's Testing Robot Sales Assistants in California Store

Lowe's Testing Robot Sales Assistants in California Store

Buzz60 (Oct. 29, 2014) Lowe’s is testing out what it’s describing as a robotic shopping assistant in one of its Orchard Supply Hardware Stores in California. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins