Featured Research

from universities, journals, and other organizations

Tiny channel cleanses blood

Date:
May 2, 2012
Source:
American Institute of Physics
Summary:
A microfluidic device separates bacteria and immune cells from red blood cells.

Margination, the natural phenomenon where bacteria and leukocytes (white blood cells) move toward the sides of blood vessels, is the inspiration for a novel method for treating sepsis, a systemic and often dangerous inflammatory response to microbial infection in the blood. A team of researchers at the Massachusetts Institute of Technology and the National University of Singapore has designed a branchlike system of microfluidic channels, 20 micrometers (20 millionths of a meter, or about one-fifth the size of a grain of sand) high by 20 micrometers wide, that mimic the marginizing action of vessels on bacteria and inflammatory cellular components (leukocytes and platelets) to separate them from red blood cells.

The microchannel network is etched onto a polymer chip by the same techniques used for manufacturing integrated circuits. As infected whole blood flows through the first part of the microchannel, red cells migrate toward the center while the unwanted cell types flow toward the side walls. Like a biological railway junction, the second part of the microchannel is divided into three branches with red cells taking the middle path and the marginated microbes, leukocytes, and platelets moving into the two outer ones. A second three-branch junction further purifies the red cell fraction, which could then be returned to a patient in a real-life situation.

In their experiment with the prototype device, the researchers demonstrated highly efficient removal of the bacteria Escherichia coli (80 percent) and the yeast Saccharomyces cerevisiae (90 percent) as well as a greater than 80 percent depletion of inflammatory cellular components. The researchers also designed and tested a larger blood cleansing system consisting of six microfluidic channel networks in parallel.

Currently, they are conducting a small-scale animal test to validate the efficacy of the technique in vivo.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Han Wei Hou, Hiong Yap Gan, Ali Asgar S. Bhagat, Leon D. Li, Chwee Teck Lim, Jongyoon Han. A microfluidics approach towards high-throughput pathogen removal from blood using margination. Biomicrofluidics, 2012; 6 (2): 024115 DOI: 10.1063/1.4710992

Cite This Page:

American Institute of Physics. "Tiny channel cleanses blood." ScienceDaily. ScienceDaily, 2 May 2012. <www.sciencedaily.com/releases/2012/05/120502112912.htm>.
American Institute of Physics. (2012, May 2). Tiny channel cleanses blood. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2012/05/120502112912.htm
American Institute of Physics. "Tiny channel cleanses blood." ScienceDaily. www.sciencedaily.com/releases/2012/05/120502112912.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins