Featured Research

from universities, journals, and other organizations

Morphing robots and shape-shifting sculptures: Origami-inspired design merges engineering, art

Date:
May 21, 2012
Source:
Purdue University
Summary:
Researchers have shown how to create morphing robotic mechanisms and shape-shifting sculptures from a single sheet of paper in a method reminiscent of origami, the Japanese art of paper folding.

This graphic illustrates the creation of morphing robot-like mechanisms and shape-shifting sculptures from a single sheet of paper in a method reminiscent of origami, the Japanese art of paper folding. The robotic and artistic designs are made up of building blocks called "basic structural units," or BSUs. Each BSU contains two segments joined by a creased hinge, and many BSUs are linked together to create larger structures.
Credit: Purdue University

Researchers have shown how to create morphing robotic mechanisms and shape-shifting sculptures from a single sheet of paper in a method reminiscent of origami, the Japanese art of paper folding.

Related Articles


The new method, called Kaleidogami, uses computational algorithms and tools to create precisely folded structures.

"The approach represents new geometric algorithms and methods to create works of kinetic, or moving, art," said Karthik Ramani, Purdue University's Donald W. Feddersen Professor of Mechanical Engineering. "Scientists and engineers are often motivated by the beauty of artistic representations while artists and architectural designers want to harness concepts from science, technology, engineering and mathematics. One of our aims is to provide a new geometry-inspired art form, reconfigurable structures, in the emerging field of kinetic art."

Whereas Kaleidogami focuses on artistic representations of sculptural structures, the researchers also have created a variation called Kinetogami to create foldable robot-like mechanisms. They envision robots that can "reconfigure" themselves to suit the terrain, morphing from a slithering inchworm motion to a six-legged walking gait.

"Our hexapod robotic mechanism can adjust its body frequently in an adaptive manner to provide a wide range of gaits: lying down, flipping itself up, rising, squatting, squirming and crawling," said mechanical engineering doctoral student Wei Gao. "The folded designs have an elegant simplicity, while using paper and cardboard-like materials that are flat is practical because they are very inexpensive and lightweight."

Findings about the concept are detailed in a research paper being presented during the Shape Modeling International 2012 conference on May 22-25 in College Station, Texas. Other findings specifically about the robotlike mechanisms with Kinetogami will be presented during the American Society of Mechanical Engineers International Design Engineering Technical Conferences on Aug. 12-15 in Chicago.

The method also could be used in architecture to design features including vaulted ceilings, skylights and retractable roofs.

The researchers have created paper models of the designs and are looking into using a variety of systems to power the structures.

"This is a proof of concept," said Raymond Cipra, a professor of mechanical engineering and a co-author of the second research paper.

The robotic and artistic designs are made up of building blocks called "basic structural units," or BSUs. Each BSU contains two segments joined by a creased hinge, and many BSUs are linked together to create larger structures.

"Whereas traditional origami allows only folding, we create our structures by folding and also making cuts to a single piece of flat paperlike materials," Gao said.

Such robots, toys and artwork would be ideal for shipping because they could be transported as a flat sheet and later changed into their three-dimensional structures.

"It also gives rise to a lot of interesting educational applications," Gao said. "For example, you can help students learn 3-D geometry, study mechanics and test load carrying capacity and stiffness while at the same time having fun."

The researchers plan to explore collaborations with museums to incorporate kinetic art in exhibits.


Story Source:

The above story is based on materials provided by Purdue University. The original article was written by Emil Venere. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Morphing robots and shape-shifting sculptures: Origami-inspired design merges engineering, art." ScienceDaily. ScienceDaily, 21 May 2012. <www.sciencedaily.com/releases/2012/05/120521164106.htm>.
Purdue University. (2012, May 21). Morphing robots and shape-shifting sculptures: Origami-inspired design merges engineering, art. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2012/05/120521164106.htm
Purdue University. "Morphing robots and shape-shifting sculptures: Origami-inspired design merges engineering, art." ScienceDaily. www.sciencedaily.com/releases/2012/05/120521164106.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) — British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) — A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) — A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) — Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins