Featured Research

from universities, journals, and other organizations

New statistical model lets patient's past forecast future ailments

Date:
June 4, 2012
Source:
University of Washington
Summary:
Analyzing medical records from thousands of patients, statisticians have devised a statistical model for predicting what other medical problems a patient might encounter.

Analyzing medical records from thousands of patients, statisticians have devised a statistical model for predicting what other medical problems a patient might encounter.

Like how Netflix recommends movies and TV shows or how Amazon.com suggests products to buy, the algorithm makes predictions based on what a patient has already experienced as well as the experiences of other patients showing a similar medical history.

"This provides physicians with insights on what might be coming next for a patient, based on experiences of other patients. It also gives a predication that is interpretable by patients," said Tyler McCormick, an assistant professor of statistics and sociology at the University of Washington.

The algorithm will be published in an upcoming issue of the journal Annals of Applied Statistics. McCormick's co-authors are Cynthia Rudin, Massachusetts Institute of Technology, and David Madigan, Columbia University.

McCormick said that this is one of the first times that this type of predictive algorithm has been used in a medical setting. What differentiates his model from others, he said, is that it shares information across patients who have similar health problems. This allows for better predictions when details of a patient's medical history are sparse.

For example, new patients might lack a lengthy file listing ailments and drug prescriptions compiled from previous doctor visits. The algorithm can compare the patient's current health complaints with other patients who have a more extensive medical record that includes similar symptoms and the timing of when they arise. Then the algorithm can point to what medical conditions might come next for the new patient.

"We're looking at each sequence of symptoms to try to predict the rest of the sequence for a different patient," McCormick said. If a patient has already had dyspepsia and epigastric pain, for instance, heartburn might be next.

The algorithm can also accommodate situations where it's statistically difficult to predict a less common condition. For instance, most patients do not experience strokes, and accordingly most models could not predict one because they only factor in an individual patient's medical history with a stroke. But McCormick's model mines medical histories of patients who went on to have a stroke and uses that analysis to make a stroke prediction.

The statisticians used medical records obtained from a multiyear clinical drug trial involving tens of thousands of patients aged 40 and older. The records included other demographic details, such as gender and ethnicity, as well as patients' histories of medical complaints and prescription medications.

They found that of the 1,800 medical conditions in the dataset, most of them -- 1,400 -- occurred fewer than 10 times. McCormick and his co-authors had to come up with a statistical way to not overlook those 1,400 conditions, while alerting patients who might actually experience those rarer conditions.

They came up with a statistical modeling technique that is grounded in Bayesian methods, the backbone of many predictive algorithms. McCormick and his co-authors call their approach the Hierarchical Association Rule Model and are working toward making it available to patients and doctors.

"We hope that this model will provide a more patient-centered approach to medical care and to improve patient experiences," McCormick said.

The work was funded by a Google Ph.D. fellowship awarded to McCormick and by the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Washington. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tyler H. McCormick, Cynthia Rudin and David Madigan. Bayesian Hierarchical Rule Modeling for Predicting Medical Conditions. Annals of Applied Statistics, 2012 [link]

Cite This Page:

University of Washington. "New statistical model lets patient's past forecast future ailments." ScienceDaily. ScienceDaily, 4 June 2012. <www.sciencedaily.com/releases/2012/06/120604092643.htm>.
University of Washington. (2012, June 4). New statistical model lets patient's past forecast future ailments. ScienceDaily. Retrieved September 24, 2014 from www.sciencedaily.com/releases/2012/06/120604092643.htm
University of Washington. "New statistical model lets patient's past forecast future ailments." ScienceDaily. www.sciencedaily.com/releases/2012/06/120604092643.htm (accessed September 24, 2014).

Share This



More Health & Medicine News

Wednesday, September 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Ebola Cases Could Reach 1.4 Million Within 4 Months

Ebola Cases Could Reach 1.4 Million Within 4 Months

Newsy (Sep. 23, 2014) Health officials warn that without further intervention, the number of Ebola cases in Liberia and Sierra Leone could reach 1.4 million by January. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins